[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a142980 -id:a142980
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(1) = 1, a(2) = 3, a(n+2) = 3*a(n+1) + (n+1)^2*a(n).
+10
17
1, 3, 13, 66, 406, 2868, 23220, 210192, 2116656, 23375520, 281792160, 3673814400, 51599514240, 775673176320, 12440524320000, 211848037632000, 3820318338816000, 72685037892096000, 1455838255452672000
OFFSET
1,2
COMMENTS
This is the case m = 1 of the more general recurrence a(1) = 1, a(2) = 2*m + 1, a(n+2) = (2*m + 1)*a(n+1) + (n + 1)^2*a(n) (we suppress the dependence of a(n) on m), which arises when accelerating the convergence of Mercator's series for the constant log(2). For other cases see A024167 (m = 0), A142980 (m = 2), A142981 (m = 3) and A142982 (m = 4).
The solution to the general recurrence may be expressed as a sum: a(n) = n!*p_m(n)*Sum_{k = 1..n} (-1)^(k+1)/(k*p_m(k-1)*p_m(k)), where p_m(x) = Sum_{k = 0..m} 2^k*C(m,k)*C(x,k) = Sum_{k = 0..m} C(m,k)*C(x+k,m), is the Ehrhart polynomial of the m-dimensional cross polytope (the hyperoctahedron).
The first few values are p_0(x) = 1, p_1(x) = 2*x + 1, p_2(x) = 2*x^2 + 2*x + 1 and p_3(x) = (4*x^3 + 6*x^2 + 8*x + 3)/3.
The sequence {p_m(k)},k>=0 is the crystal ball sequence for the product lattice A_1 x... x A_1 (m copies). The table of values [p_m(k)]m,k>=0 is the array of Delannoy numbers A008288.
The polynomial p_m(x) is the unique polynomial solution of the difference equation (x + 1)*f(x+1) - x*f(x-1) = (2*m + 1)*f(x), normalized so that f(0) = 1. These polynomials have their zeros on the vertical line Re x = -1/2 in the complex plane, that is, the polynomials p_m(x-1), m = 1,2,3,..., satisfy a Riemann hypothesis [BUMP et al., Theorems 4 and 6]. The o.g.f. for the p_m(x) is (1 + t)^x/(1 - t)^(x+1) = 1 + (2*x + 1)*t + (2*x^2 + 2*x + 1)*t^2 + ....
The general recurrence in the first paragraph above also has a second solution b(n) = n!*p_m(n) with initial conditions b(1) = 2*m + 1, b(2) = (2*m + 1)^2 + 1.
Hence the behavior of a(n) for large n is given by lim_{n -> oo} a(n)/b(n) = Sum_{k >= 1} (-1)^(k+1)/(k*p_m(k-1)*p_m(k)) = 1/((2*m + 1) + 1^2/((2*m + 1) + 2^2/((2*m + 1) + 3^2/((2*m + 1) + ... + n^2/((2*m + 1) + ...))))) = (-1)^m * (log(2) - (1 - 1/2 + 1/3 - ... + (-1)^(m+1)/m)), where the final equality follows by a result of Ramanujan (see [Berndt, Chapter 12, Entry 29]).
For other sequences defined by similar recurrences and related to log(2) see A142983 and A142988. See also A142992 for the connection between log(2) and the C_n lattices. For corresponding results for the constants e, zeta(2) and zeta(3) see A000522, A142995 and A143003 respectively.
REFERENCES
Bruce C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag.
LINKS
D. Bump, K. Choi, P. Kurlberg and J. Vaaler, A local Riemann hypothesis, I, Math. Zeit. 233, (2000), 1-19.
FORMULA
a(n) = n!*p(n)*Sum_{k = 1..n} (-1)^(k+1)/(k*p(k-1)*p(k)), where p(n) = 2*n + 1.
Recurrence: a(1) = 1, a(2) = 3, a(n+2) = 3*a(n+1) + (n + 1)^2*a(n).
The sequence b(n):= n!*p(n) satisfies the same recurrence with b(1) = 3, b(2) = 10.
Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(3 + 1^2/(3 + 2^2/(3 + 3^2/(3 + ... + (n-1)^2/3)))), for n >= 2.
Limit_{n -> oo} a(n)/b(n) = 1/(3 + 1^2/(3 + 2^2/(3 + 3^2/(3 + ... + (n-1)^2/(3 + ...))))) = Sum_{k >= 1} (-1)^(k+1)/(k*(4k^2 - 1)) = 1 - log(2).
Thus a(n) ~ c*n*n! as n -> oo, where c = 2*(1 - log(2)).
From Peter Bala, Dec 09 2024: (Start)
E.g.f.: A(x) = (2*x - (1 + x)*log(1 + x))/(1 - x)^2 satisfies the differential equation 1 + (x + 3)*A(x) + (x^2 - 1)*A'(x) = 0 with A(0) = 0.
Sum_{k = 1..n} Stirling_2(n, k) * a(k) = A317057(n+1). (End)
MAPLE
p := n -> 2*n+1: a := n -> n!*p(n)*sum ((-1)^(k+1)/(k*p(k-1)*p(k)), k = 1..n): seq(a(n), n = 1..20)
MATHEMATICA
RecurrenceTable[{a[1]==1, a[2]==3, a[n+2]==3a[n+1]+(n+1)^2 a[n]}, a, {n, 20}] (* Harvey P. Dale, May 20 2012 *)
KEYWORD
easy,nonn,changed
AUTHOR
Peter Bala, Jul 17 2008
STATUS
approved
A binomial recursion: a(n) = q(n) (see formula).
+10
6
0, 1, 6, 45, 400, 4115, 48146, 631729, 9189972, 146829039, 2556200086, 48167698733, 976792093784, 21211601837803, 491112582793626, 12077021182230057, 314362864408454236, 8635229233659916007, 249631741661080132766, 7575921686807827601701, 240827454421807200901728
OFFSET
1,3
LINKS
FORMULA
Let z(1) = x and z(n) = 1 + Sum_{k=1..n-1} ( (2 + binomial(n,k))*z(k)) ), then z(n) = p(n)*x + q(n).
Limit_{n->oo} p(n)/q(n) = (3 - 2*log(2))/(2*log(2) - 1 ) = 4.177398899124179661610768...
a(n) ~ (2*log(2) - 1) * n * n! / (8 * log(2)^(n+2)). - Vaclav Kotesovec, Nov 25 2020
E.g.f.: (1 - exp(x)) * (exp(x) - 2*x - 1) / (2*(2 - exp(x))^2). - Vaclav Kotesovec, Nov 25 2020
a(n+1) = Sum_{k = 1..n} Stirling2(n, k)*A142980(k). - Peter Bala, Dec 10 2024
MATHEMATICA
z[1] := x; z[n_] := 1 + Sum[(2 + Binomial[n, k])*z[k], {k, 1, n - 1}]; Table[ Coefficient[z[n], x, 0], {n, 1, 20}] (* G. C. Greubel, Sep 28 2016 *)
z[1] := x; z[n_] := z[n] = Expand[1 + Sum[(2 + Binomial[n, k])*z[k], {k, 1, n-1}]]; Table[Coefficient[z[n], x, 0], {n, 1, 30}] (* Vaclav Kotesovec, Nov 25 2020 *)
nmax = 30; Rest[CoefficientList[Series[(1 - E^x)*(E^x - 2*x - 1)/(2*(2 - E^x)^2), {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, Nov 25 2020 *)
PROG
(PARI) r=1; s=2; v=vector(120, j, x); for(n=2, 120, g=r+sum(k=1, n-1, (s+binomial(n, k))*v[k]); v[n]=g); z(n)=v[n]; p(n)=polcoeff(z(n), 1); q(n)=polcoeff(z(n), 0); a(n)=p(n);
KEYWORD
nonn,easy,changed
AUTHOR
Benoit Cloitre, Nov 20 2007
STATUS
approved
a(1) = 1, a(2) = 7, a(n+2) = 7*a(n+1) + (n+1)^2*a(n).
+10
4
1, 7, 53, 434, 3886, 38052, 406260, 4708368, 58959216, 794092320, 11454567840, 176267145600, 2883327788160, 49972442123520, 914939341344000, 17648374867200000, 357763095454464000, 7604722004802048000
OFFSET
1,2
COMMENTS
This is the case m = 3 of the more general recurrence a(1) = 1, a(2) = 2*m + 1, a(n+2) = (2*m + 1)*a(n+1) + (n + 1)^2*a(n), which arises when accelerating the convergence of Mercator's series for the constant log(2). See A142979 for remarks on the general case.
REFERENCES
Bruce C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag.
LINKS
FORMULA
a(n) = n!*p(n)*Sum_{k = 1..n} (-1)^(k+1)/(k*p(k-1)*p(k)), where p(n) = (4*n^3 + 6*n^2 + 8*n + 3)/3 = A001845(n) is the Ehrhart polynomial for the 3-dimensional cross polytope (the octahedron).
Recurrence: a(1) = 1, a(2) = 7, a(n+2) = 7*a(n+1) + (n + 1)^2*a(n). The sequence b(n):= n!*p(n) satisfies the same recurrence with b(1) = 7, b(2) = 50.
Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(7 + 1^2/(7 + 2^2/(7 + 3^2/(7 + ... + (n-1)^2/7)))), for n >= 2.
The behavior of a(n) for large n is given by limit_{n -> oo} a(n)/b(n) = Sum_{k >= 1} (-1)^(k+1)/(k*p(k-1)*p(k)) = 1/(7 + 1^2/(7 + 2^2/(7 + 3^2/(7 + ... + n^2/(7 + ...))))) = (1 - 1/2 + 1/3) - log(2); the final equality follows by a result of Ramanujan (see [Berndt, Chapter 12, Entry 29]). Thus a(n) ~ c*n^3*n! as n -> oo, where c = (10 - 12*log(2))/9.
E.g.f.: A(x) = (2*x*(4*x^2 + 3*x + 3) - 3*(x + 1)^3*log(1 + x) )/(3*(1 - x)^4) satisfies the differential equation 1 + (x + 7)*A(x) + (x^2 - 1)*A'(x) = 0 with A(0) = 0. - Peter Bala, Dec 09 2024
MAPLE
p := n -> (4*n^3+6*n^2+8*n+3)/3: a := n -> n!*p(n)*sum ((-1)^(k+1)/(k*p(k-1)*p(k)), k = 1..n): seq(a(n), n = 1..20)
CROSSREFS
KEYWORD
easy,nonn,changed
AUTHOR
Peter Bala, Jul 17 2008
STATUS
approved
a(1) = 1, a(2) = 9, a(n+2) = 9*a(n+1) + (n + 1)^2*a(n).
+10
4
1, 9, 85, 846, 8974, 101916, 1240308, 16156656, 224789616, 3331795680, 52465122720, 875333381760, 15432978107520, 286828144485120, 5606317009440000, 114993185594112000, 2470155824763648000, 55464433059571200000, 1299510384759562752000, 31718253797341267968000
OFFSET
1,2
COMMENTS
This is the case m = 4 of the more general recurrence a(1) = 1, a(2) = 2*m + 1, a(n+2) = (2*m + 1)*a(n+1) + (n + 1)^2*a(n), which arises when accelerating the convergence of Mercator's series for the constant log(2). See A142979 for remarks on the general case.
REFERENCES
Bruce C. Berndt, Ramanujan's Notebooks Part II, Springer-Verlag.
LINKS
FORMULA
a(n) = n!*p(n)*Sum_{k = 1..n} (-1)^(k+1)/(k*p(k-1)*p(k)), where p(n) = (2*n^4 + 4*n^3 + 10*n^2 + 8*n + 3)/3 = A001846(n) is the Ehrhart polynomial for the 4-dimensional cross polytope (the 16-cell).
Recurrence: a(1) = 1, a(2) = 9, a(n+2) = 9*a(n+1) + (n + 1)^2*a(n).
The sequence b(n) := n!*p(n) satisfies the same recurrence with b(1) = 9, b(2) = 82.
Hence we obtain the finite continued fraction expansion a(n)/b(n) = 1/(9 + 1^2/(9 + 2^2/(9 + 3^2/(9 + ... + (n-1)^2/9)))), for n >= 2.
The behavior of a(n) for large n is given by limit_{n -> oo} a(n)/b(n) = Sum_{k >= 1} (-1)^(k+1)/(k*p(k-1)*p(k)) = 1/(9 + 1^2/(9 + 2^2/(9 + 3^2/(9 + ... + n^2/(9 + ...))))) = log(2) - (1 - 1/2 + 1/3 - 1/4); the final equality follows by a result of Ramanujan (see [Berndt, Chapter 12, Entry 29]).
Thus a(n) ~ c*n^4*n! as n -> oo, where c = (12*log(2) - 7)/18.
E.g.f.: A(x) = (3*(x + 1)^4*log(1 + x) - 4*x^2*(2*x^2 + 2*x + 3))/(3*(1 - x)^5) satisfies the differential equation 1 + (x + 9)*A(x) + (x^2 - 1)*A'(x) = 0 with A(0) = 0. - Peter Bala, Dec 09 2024
MAPLE
p := n -> (2*n^4+4*n^3+10*n^2+8*n+3)/3: a := n -> n!*p(n)*sum ((-1)^(k+1)/(k*p(k-1)*p(k)), k = 1..n): seq(a(n), n = 1..20);
CROSSREFS
KEYWORD
easy,nonn,changed
AUTHOR
Peter Bala, Jul 17 2008
STATUS
approved

Search completed in 0.018 seconds