[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A142976
a(n) = (1/18)*(9*n^2 + 21*n + 10 - 4^(n+2)*(3*n+5) + 10*7^(n+1)).
5
1, 39, 546, 5482, 47175, 373809, 2824048, 20729340, 149474205, 1065892555, 7547929806, 53215791774, 374165893891, 2626319535477, 18415017346620, 129036833755984, 903819045351033, 6329115592649775, 44313888005135290, 310239730485553170
OFFSET
1,2
LINKS
FORMULA
a(n) = A142458(n+2,n).
G.f.: x*(1+21*x-36*x^2-40*x^3) / ((1-7*x)*(4*x-1)^2*(1-x)^3). - R. J. Mathar, Sep 14 2013
MAPLE
A142976:=n->5/9 + n^2/2 + 7*n/6 - 4^(n+1) * (2*n/3 + 10/9) + 5*7^(n+1)/9: seq(A142976(n), n=1..25); # Wesley Ivan Hurt, Oct 17 2017
MATHEMATICA
(* First program *)
T[n_, k_, m_]:= T[n, k, m]= If[k==1 || k==n, 1, (m*n-m*k+1)*T[n-1, k-1, m] + (m*k - m+1)*T[n-1, k, m]];
A142976[n_]:= T[n+2, n, 3];
Table[A142976[n], {n, 30}] (* modified by G. C. Greubel, Mar 16 2022 *)
(* Additional programs *)
CoefficientList[Series[(1 +21*x -36*x^2 -40*x^3)/((1-7*x)*(1-4*x)^2*(1-x)^3), {x, 0, 25}], x] (* Wesley Ivan Hurt, Oct 17 2017 *)
LinearRecurrence[{18, -120, 374, -567, 408, -112}, {1, 39, 546, 5482, 47175, 373809}, 40] (* Vincenzo Librandi, Oct 18 2017 *)
PROG
(Magma) [5/9 + n^2/2 + 7*n/6 - 4^(n+1) * (2*n/3 + 10/9) + 5*7^(n+1)/9: n in [1..25]]; // Wesley Ivan Hurt, Oct 17 2017
(Sage) [(1/18)*(9*n^2 + 21*n + 10 - 4^(n+2)*(3*n+5) + 10*7^(n+1)) for n in (1..30)] # G. C. Greubel, Mar 16 2022
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved