[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057204
Primes congruent to 1 mod 6 generated recursively. Initial prime is 7. The next term is p(n) = Min_{p is prime; p divides 4Q^2+3; p mod 6 = 1}, where Q is the product of previous entries of the sequence.
28
7, 199, 7761799, 487, 67, 103, 3562539697, 7251847, 13, 127, 5115369871402405003, 31, 697830431171707, 151, 3061, 229, 193, 5393552285540920774057256555028583857599359699, 709, 397, 37, 61, 46168741, 3127279, 181, 122268541
OFFSET
1,1
COMMENTS
4*Q^2 + 3 always has a prime divisor congruent to 1 modulo 6.
If we start with the empty product Q=1 then it is not necessary to specify the initial prime. - Jens Kruse Andersen, Jun 30 2014
REFERENCES
P. G. L. Dirichlet (1871): Vorlesungen uber Zahlentheorie. Braunschweig, Viewig, Supplement VI, 24 pages.
G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, page 13.
LINKS
EXAMPLE
a(4)=487 is the smallest prime divisor of 4*Q*Q + 3 = 10812186007, congruent to 1 (mod 6), where Q = 7*199*7761799.
MATHEMATICA
a={7}; q=1;
For[n=2, n<=7, n++,
q=q*Last[a];
AppendTo[a, Min[Select[FactorInteger[4*q^2+3][[All, 1]], Mod[#, 6]==1 &]]];
];
a (* Robert Price, Jul 16 2015 *)
PROG
(PARI) Q=1; for(n=1, 11, f=factor(4*Q^2+3); for(i=1, #f~, p=f[i, 1]; if(p%6==1, break)); print1(p", "); Q*=p) \\ Jens Kruse Andersen, Jun 30 2014
KEYWORD
nonn
AUTHOR
Labos Elemer, Oct 09 2000
EXTENSIONS
More terms from Nick Hobson, Nov 14 2006
More terms from Sean A. Irvine, Oct 23 2014
STATUS
approved