[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A124988
Primes of the form 12k+7 generated recursively. Initial prime is 7. General term is a(n)=Min {p is prime; p divides 3+4Q^2; Mod[p,12]=7}, where Q is the product of previous terms in the sequence.
2
7, 199, 7761799, 487, 67, 103, 1482549740515442455520791, 31, 139, 787, 19, 39266047, 1955959, 50650885759, 367, 185767, 62168707
OFFSET
1,1
COMMENTS
All prime divisors of 3+4Q^2 are congruent to 1 modulo 6.
At least one prime divisor of 3+4Q^2 is congruent to 3 modulo 4 and hence to 7 modulo 12.
The first six terms are the same as those of A057204.
LINKS
EXAMPLE
a(3) = 1482549740515442455520791 is the smallest prime divisor congruent to 7 mod 12 of 3+4Q^2 = 5281642303363312989311974746340327 = 3562539697 * 1482549740515442455520791, where Q = 7 * 199 * 7761799 * 487 * 67 * 103.
MATHEMATICA
a={7}; q=1;
For[n=2, n<=7, n++,
q=q*Last[a];
AppendTo[a, Min[Select[FactorInteger[4*q^2+3][[All, 1]], Mod[#, 12]==7 &]]];
];
a (* Robert Price, Jul 15 2015 *)
KEYWORD
nonn
AUTHOR
Nick Hobson, Nov 18 2006
STATUS
approved