[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A034383
Number of labeled groups.
5
1, 2, 3, 16, 30, 480, 840, 22080, 68040, 1088640, 3991680, 259459200, 518918400, 16605388800, 163459296000, 10353459916800, 22230464256000, 1867358997504000, 6758061133824000, 648773868847104000, 5474029518397440000, 122618261212102656000
OFFSET
1,2
COMMENTS
From Jianing Song, Mar 02 2024: (Start)
In other words, number of ways to define a group structure on a set of n elements. Note that for a group G, a group structure on the set G is given by mapping (x,y) to sigma^(-1)(sigma(x)*sigma(y)), where sigma is a bijection on the set G; sigma and sigma' give the same structure if and only if sigma' is the composition of a group automorphism of G and sigma.
By definition, a(n) = A034381(n) if n in A003277, otherwise a(n) > A034381(n). The indices of records of a(n)/A034381(n) among the known terms are 1, 4, 8, 16, 24, 32, 48, 64, 96, 128, 192, with a(192)/A034381(192) = 122774329/1640520 ~ 74.8.
Also by definition, a(n) >= A000001(n)*n!/A059773(n). If the conjecture A059773(2^r) = A002884(r) is true, then A059773(2^r) <= 2^(r^2), while A000001(2^r) >= 2^((2/27)*r^2*(r-6)) (see the Math Stack Exchange link below), so a(2^r)/A034381(2^r) tends to infinity quickly as r tends to infinity.
The sequence is strictly increasing for the first 256 terms (a(256) > A034381(256) > A034381(255) = a(255) since 255 is in A003277). On the other hand, assuming that A059773(2^r) = A002884(r), then a(2^20)/(2^20)! >= A000001(2^20)/A002884(20) > 99798.4, while a(2^20+1)/(2^20)! = A034381(2^20+1)/(2^20)! = (2^20+1)/phi(2^20+1) since 2^20+1 = 17*61681 is in A003277, so we would have a(2^20) > a(2^20+1). It is conjectured a(2^r) > a(2^r+1) for all sufficiently large r. (End)
FORMULA
a(n) = n * A058163(n).
a(n) = Sum n!/|Aut(G)|, where the sum is taken over the different products G of cyclic groups with |G| = n.
PROG
(GAP) A034383 := function(n) local fn, sum, k; fn := Factorial(n); sum := 0; for k in [1 .. NrSmallGroups(n)] do sum := sum + fn / Size(AutomorphismGroup(SmallGroup(n, k))); od; return sum; end; # Stephen A. Silver, Feb 10 2013
CROSSREFS
KEYWORD
nonn
EXTENSIONS
More terms from Stephen A. Silver, Feb 10 2013
STATUS
approved