[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Search: a034383 -id:a034383
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of labeled Abelian groups of order n.
+10
7
1, 2, 3, 16, 30, 360, 840, 15360, 68040, 907200, 3991680, 159667200, 518918400, 14529715200, 163459296000, 4250979532800, 22230464256000, 1200445069824000, 6758061133824000, 405483668029440000
OFFSET
1,2
LINKS
Hy Ginsberg, Totally Symmetric Quasigroups of Order 16, arXiv:2211.13204 [math.CO], 2022.
C. J. Hillar and D. Rhea. Automorphisms of finite Abelian groups. American Mathematical Monthly 114:10 (2007), 917-923. Preprint arXiv:math/0605185 [math.GR], 2006.
Sugarknri et al., Number of labeled Abelian groups of order n, Mathematics Stack Exchange, 2019.
FORMULA
a(n) = A058162(n) * n.
a(n) = Sum n!/|Aut(G)|, where the sum is taken over the different products G of cyclic groups with |G|=n. Formula for |Aut(G)| is given by Hillar and Rhea (2007). Another formula is given by Sugarknri (2019).
CROSSREFS
KEYWORD
nonn
EXTENSIONS
a(16) corrected by Max Alekseyev, Sep 12 2019
STATUS
approved
Number of labeled groups with a fixed identity.
+10
7
1, 1, 1, 4, 6, 80, 120, 2760, 7560, 108864, 362880, 21621600, 39916800, 1186099200, 10897286400, 647091244800, 1307674368000, 103742166528000, 355687428096000, 32438693442355200, 260668072304640000, 5573557327822848000, 51090942171709440000
OFFSET
1,4
FORMULA
a(n) = A034383(n)/n.
PROG
(GAP) A058163 := function(n) local fn1, sum, k; fn1 := Factorial(n-1); sum := 0; for k in [1 .. NrSmallGroups(n)] do sum := sum + fn1 / Size(AutomorphismGroup(SmallGroup(n, k))); od; return sum; end; # Stephen A. Silver, Feb 10 2013
CROSSREFS
KEYWORD
nonn
AUTHOR
Christian G. Bower, Nov 15 2000
EXTENSIONS
More terms from Stephen A. Silver, Feb 10 2013
STATUS
approved
Number of labeled cyclic groups with n elements.
+10
6
1, 2, 3, 12, 30, 360, 840, 10080, 60480, 907200, 3991680, 119750400, 518918400, 14529715200, 163459296000, 2615348736000, 22230464256000, 1067062284288000, 6758061133824000, 304112751022080000, 4257578514309120000, 112400072777760768000, 1175091669949317120000
OFFSET
1,2
COMMENTS
This sequence is strictly increasing, since a(n) = n!/phi(n) > n!/n = (n-1)! >= a(n-1) for n >= 2. - Jianing Song, Mar 02 2024
FORMULA
a(n) = n!/phi(n).
a(n) = A000142(n)/A000010(n) = n*A058161(n).
PROG
(PARI) a(n) = n! / eulerphi(n) \\ Jianing Song, Mar 02 2024
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
a(21) onwards from Jianing Song, Mar 02 2024
STATUS
approved
Triangle read by rows: T(n,k) is the number of labeled monoids of order n with k idempotents.
+10
4
1, 2, 2, 3, 18, 12, 16, 180, 288, 140, 30, 2640, 6540, 8380, 3020, 480, 119610, 238200, 421020, 372360, 100362, 840, 25196052, 13786290, 26803000, 36174600, 22822674, 4768624, 22080, 48687313640, 2254725312, 2358499080, 3849768160, 3859581096, 1826525120, 305498328
OFFSET
1,2
FORMULA
T(n,k) = A058158(n,k)*n.
EXAMPLE
Triangle begins:
1;
2, 2;
3, 18, 12;
16, 180, 288, 140;
30, 2640, 6540, 8380, 3020;
...
CROSSREFS
Row sums give A058153.
Column 1: A034383.
Main diagonal is A351731.
Cf. A058137 (isomorphism classes), A058158, A058159 (commutative), A058166.
KEYWORD
nonn,tabl
AUTHOR
Christian G. Bower, Nov 14 2000
EXTENSIONS
a(30)-a(36) from Andrew Howroyd, Feb 15 2022
STATUS
approved

Search completed in 0.011 seconds