[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000986
Number of n X n symmetric matrices with (0,1) entries and all row sums 2.
(Formerly M3548 N1437)
11
1, 0, 1, 4, 18, 112, 820, 6912, 66178, 708256, 8372754, 108306280, 1521077404, 23041655136, 374385141832, 6493515450688, 119724090206940, 2337913445039488, 48195668439235612, 1045828865817825264, 23826258064972682776, 568556266922455167040
OFFSET
0,4
COMMENTS
a(n) is the number of simple labeled graphs on n nodes with all vertices of degree 1 or 2.
From R. J. Mathar, Apr 07 2017: (Start)
These are the row sums of the following triangle which shows the number of symmetric n X n {0,1} matrices with row and column sums 2 refined for trace t, 0 <= t <= n:
0: 1
1: 0 0
2: 0 0 1
3: 1 0 3 0
4: 3 0 12 0 3
5: 12 0 70 0 30 0
6: 70 0 465 0 270 0 15
7: 465 0 3507 0 2625 0 315 0
See also A001205 for column t=0. (End)
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.2.8.
Herbert S. Wilf, Generatingfunctionology, p. 104.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..445 (first 101 terms from T. D. Noe)
H. Gupta, Enumeration of symmetric matrices, Duke Math. J., 35 (1968), vol 3, 653-659.
H. Gupta, Enumeration of symmetric matrices (annotated scanned copy)
Zhonghua Tan, Shanzhen Gao, and H. Niederhausen, Enumeration of (0,1) matrices with constant row and column sums, Appl. Math. Chin. Univ. 21 (4) (2006) 479-486.
FORMULA
E.g.f.: (1-x)^(-1/2)*exp(-x-x^2/4 + x/((2*(1-x)))).
Sum_{a_1=0..n} Sum_{c=0..min(a_1, n - a_1)} Sum_{b=0..floor((n - a_1 - c)/2)} (
(-1)^((n - a_1 - 2b - c) + b) n!(2a_{1})!}{% 2^{n+a_{1}-2c}a_{1}!(n-a_{1}-2b-c)!b!(2c)!(a_{1}-c)!}$
Sum_{a_1=0..n} Sum_{c=0..min(a_1, n - a_1)} Sum_{b=0..floor((n - a_1 - c)/2)} ((-1)^((n - a_1 - 2b - c) + b)*n!*(2a_1)!) / (2^(n + a_1 - 2c)*a_1!*(n - a_1 - 2b - c)!*b!*(2c)!*(a_1 - c)!). - Shanzhen Gao, Jun 05 2009
Conjecture: 2*a(n) +2*(-2*n+1)*a(n-1) +2*(n^2-2*n-1)*a(n-2) -2*(n-2)*(n-4)*a(n-3) +(n-1)*(n-2)*(n-3)*a(n-4) -(n-2)*(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Aug 04 2013
Recurrence: 2*a(n) = 4*(n-1)*a(n-1) - 2*(n-3)*(n-1)*a(n-2) - (n-3)*(n-2)*(n-1)*a(n-4). - Vaclav Kotesovec, Feb 13 2014
a(n) ~ n^n * exp(sqrt(2*n)-n-3/2) / sqrt(2) * (1 + 43/(24*sqrt(2*n))). - Vaclav Kotesovec, Feb 13 2014
MAPLE
a:= proc(n) option remember;
`if`(n<2, 1-n, add(binomial (n-1, k-1)
*(k! +`if`(k>2, (k-1)!, 0))/2 *a(n-k), k=2..n))
end:
seq(a(n), n=0..30); # Alois P. Heinz, Feb 24 2011
MATHEMATICA
a=1/(2(1-x))-1/2-x/2; b=(Log[1/(1-x)]-x-x^2/2)/2;
Range[0, 20]! CoefficientList[Series[Exp[a + b], {x, 0, 20}], x]
(* Second program: *)
a[n_] := a[n] = If[n<2, 1-n, Sum[Binomial[n-1, k-1]*(k! + If[k>2, (k-1)!, 0])/2*a[n-k], {k, 2, n}]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Feb 20 2017, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A003708 A327679 A330353 * A364623 A143920 A233534
KEYWORD
nonn,nice,easy
STATUS
approved