[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A007362
Denominator of n-th power of Hermite constant for dimension n.
(Formerly M2209)
2
1, 3, 1, 1, 1, 3, 1, 1
OFFSET
1,2
COMMENTS
From the work of Cohn and Kumar we know that a(24) = 1.
REFERENCES
J. W. S. Cassels, An Introduction to the Geometry of Numbers. Springer-Verlag, NY, 2nd ed., 1971, p. 332.
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 20.
P. M. Gruber and C. G. Lekkerkerker, Geometry of Numbers, North-Holland, Amsterdam, 2nd ed., 1987, p. 410.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
H. Cohn and A. Kumar, Optimality and uniqueness of the Leech lattice among lattices, arXiv:math/0403263 [math.MG], 2004-2017.
H. Cohn and A. Kumar, The densest lattice in twenty-four dimensions, arXiv:math/0408174 [math.MG], 2004.
Eric Weisstein's World of Mathematics, Hermite Constants.
EXAMPLE
1, 4/3, 2, 4, 8, 64/3, 64, 256, ... = A007361/A007362.
CROSSREFS
Cf. A007361.
Sequence in context: A075053 A328516 A328517 * A214709 A369317 A060268
KEYWORD
nonn,hard,nice,frac,changed
STATUS
approved