[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
login
A369317
a(n) = A091255(n, n + 1).
3
1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 7, 1, 3, 1, 1, 1, 3, 1, 7, 1, 1, 1, 5, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 7, 1, 3, 1, 1
OFFSET
1,5
COMMENTS
Two consecutive integers are always coprime, however the polynomials over GF(2) whose coefficients are encoded in the binary expansions of two consecutive integers are not necessarily coprime, hence this sequence.
FORMULA
a(A129868(k)) = 2^(k+1) - 1 for any k > 0.
EXAMPLE
The first terms, alongside the correspond GF(2)[X]-polynomials, are:
n a(n) P(n) P(n+1) gcd(P(n), P(n+1))
-- ---- ----------------- ----------------- -----------------
1 1 1 X 1
2 1 X X + 1 1
3 1 X + 1 X^2 1
4 1 X^2 X^2 + 1 1
5 3 X^2 + 1 X^2 + X X + 1
6 1 X^2 + X X^2 + X + 1 1
7 1 X^2 + X + 1 X^3 1
8 1 X^3 X^3 + 1 1
9 3 X^3 + 1 X^3 + X X + 1
10 1 X^3 + X X^3 + X + 1 1
PROG
(PARI) a(n) = fromdigits(lift(Vec(gcd(Mod(1, 2) * Pol(binary(n)), Mod(1, 2) * Pol(binary(n+1))))), 2)
CROSSREFS
Cf. A091255, A129868, A369277 (distinct values), A369318 (indices of values <> 1).
Sequence in context: A328517 A007362 A214709 * A060268 A339877 A030328
KEYWORD
nonn,base
AUTHOR
Rémy Sigrist, Jan 19 2024
STATUS
approved