Abstract
We report a computational study of two-stage SP models on a large set of benchmark problems and consider the following methods: (i) Solution of the deterministic equivalent problem by the simplex method and an interior point method, (ii) Benders decomposition (L-shaped method with aggregated cuts), (iii) Regularised decomposition of Ruszczyński (Math Program 35:309–333, 1986), (iv) Benders decomposition with regularization of the expected recourse by the level method (Lemaréchal et al. in Math Program 69:111–147, 1995), (v) Trust region (regularisation) method of Linderoth and Wright (Comput Optim Appl 24:207–250, 2003). In this study the three regularisation methods have been introduced within the computational structure of Benders decomposition. Thus second-stage infeasibility is controlled in the traditional manner, by imposing feasibility cuts. This approach allows extensions of the regularisation to feasibility issues, as in Fábián and Szőke (Comput Manag Sci 4:313–353, 2007). We report computational results for a wide range of benchmark problems from the POSTS and SLPTESTSET collections and a collection of difficult test problems compiled by us. Finally the scale-up properties and the performance profiles of the methods are presented.
Similar content being viewed by others
References
Ariyawansa K.A. and Felt A.J. (2004). On a new collection of stochastic linear programming test problems. INFORMS J. Comput. 16(3): 291–299
Beale E.M.L. (1955). On minimizing a convex function subject to linear inequalities. J. R. Stat. Soc. B 17: 173–184
Benders, J.F.: Partitioning procedures for solving mixed-variables programming problems. Numer. Math. 4, 238–252 (1962). Re-publised in Comput. Manag. Sci. 2, 3–19 (2005)
Birge J.R. (1997). Stochastic programming computation and applications: state-of-the-art survey. INFORMS J. Comput. 9(2): 111–133
Birge J.R., Dempster M.A.H., Gassmann H.I., Gunn E.A., King A.J. and Wallace S.W. (1987). A standard input format for multiperiod stochastic linear programs. COAL Newslett. 17: 1–19
Birge J.R. and Louveaux F.V. (1988). A multicut algorithm for two-stage stochastic linear programs. Eur. J. Oper. Res. 34: 384–392
Birge J.R. and Louveaux F.V. (1997). Introduction to Stochastic Programming. Springer, New York
Colombo M. and Gondzio J. (2008). Further development of multiple centrality correctors for interior point methods. Comput. Optim. Appl. 41: 277–305
Colombo, M., Gondzio, J., Grothey, A.: A warm-start approach for large-scale stochastic linear programs. Math. Program. (2009). doi:10.1007/s10107-009-0290-9
Dantzig G.B. (1955). Linear programming under uncertainty. Manag. Sci. 1: 197–206
Dantzig, G.B., Madansky, A.: On the solution of two-stage linear programs under uncertainty. In: Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 165–176. University of California Press, Berkeley (1961)
Dantzig G.B. and Wolfe P. (1960). The decomposition principle for linear programs. Oper. Res. 8: 101–111
Di Domenica N., Lucas C., Mitra G. and Valente P. (2009). Scenario generation for stochastic programming and simulation: a modelling perspective. IMA J. Manag. Math. 20: 1–38
Dolan E.D. and Moré J.J. (2002). Benchmarking optimization software with performance profiles. Math. Program. 91(2): 201–213
Ellison, E.F.D., Mitra, G., Zverovich, V.: FortSP: a stochastic programming solver. OptiRisk Systems. http://www.optirisk-systems.com/manuals/FortspManual.pdf (2010)
Fábián, C.I.: Bundle-type methods for inexact data. Central Eur. J. Oper. Res. 8, 35–55 (2000). [Special issue, Csendes, T., Rapcsák, T. (eds.)]
Fábián C.I. and Szőke Z. (2007). Solving two-stage stochastic programming problems with level decomposition. Comput. Manag. Sci. 4: 313–353
Fabozzi F.J., Focardi S. and Jonas C. (2007). Trends in quantitative equity management: survey results. Quant. Finance 7(2): 115–122
Gassmann H. (1990). MSLiP: a computer code for the multistage stochastic linear programming problem. Math. Program. 47: 407–423
Gassmann H.I. and Wallace S.W. (1996). Solving linear programs with multiple right-hand sides: pricing and ordering schemes. Ann. Oper. Res. 64: 237–259
Gondzio J. (1995). HOPDM (version 2.12) a fast lp solver based on a primal-dual interior point method. Eur. J. Oper. Res. 85: 221–225
Holmes, D.: A (PO)rtable (S)tochastic programming (T)est (S)et (POSTS). http://users.iems.northwestern.edu/~jrbirge/html/dholmes/post.html (1995)
Kall, P., Mayer, J.: On testing SLP codes with SLP-IOR. In: New trends in mathematical programming: homage to Steven Vajda, pp. 115–135. Kluwer, Boston (1998)
Kall, P., Mayer, J.: Stochastic linear programming: models, theory, and computation. Springer, International Series in Operations Research and Management Science (2005)
Kall P. and Wallace S.W. (1994). Stochastic Programming. Wiley, Chichester
Kiwiel K.C. (1985). Methods of Descent for Nondifferentiable Optimization. Springer, Berlin
König, D., Suhl, L., Koberstein, A.: Optimierung des Gasbezugs im liberalisierten Gasmarkt unter Berücksichtigung von Röhren- und Untertagespeichern. In: Sammelband zur VDI Tagung “Optimierung in der Energiewirtschaft” in Leverkusen (2007)
Lemaréchal, C.: Nonsmooth optimization and descent methods. Research Report 78-4, IIASA, Laxenburg, Austria (1978)
Lemaréchal C., Nemirovskii A. and Nesterov Y. (1995). New variants of bundle methods. Math. Program. 69: 111–147
Linderoth J. and Wright S. (2003). Decomposition algorithms for stochastic programming on a computational grid. Comput. Optim. Appl. 24: 207–250
Mayer J. (1998). Stochastic Linear Programming Algorithms. Gordon and Breach Science Publishers, Amsterdam
Mitra G., Di Domenica N., Birbilis G. and Valente P. (2007). Stochastic programming and scenario generation within a simulation framework: An information perspective. Decis. Support Syst. 42: 2197–2218
Nemirovski A. (2005). Lectures in Modern Convex Optimization. ISYE, Georgia Institute of Technology
Oliveira W., Sagastizábal C. and Scheimberg S. (2011). Inexact bundle methods for two-stage stochastic programming. SIAM J. Optim. 21: 517–544
Prékopa A. (1995). Stochastic Programming. Kluwer, Dordrecht
Rockafellar R.T. (1976). Monotone operators and the proximal point algorithm. SIAM J. Control Optim. 14: 877–898
Ruszczyński A. (1986). A regularized decomposition method for minimizing a sum of polyhedral functions. Math. Program. 35: 309–333
Ruszczyński A. (2003). Decomposition methods. In: Ruszczyński, A. and Shapiro, A. (eds) Stochastic Programming. Handbooks in Operations Research and Management Science, vol. 10, pp 141–211. Elsevier, Amsterdam
Ruszczyński A. (2006). Nonlinear Optimization. Princeton University Press, Princeton
Ruszczyński, A., Shapiro, A. : Stochastic programming models. In: Ruszczyński, A., Shapiro, A. (eds.) Stochastic Programming. Handbooks in Operations Research and Management Science, vol. 10, pp. 1–64. Elsevier, Amsterdam (2003)
Ruszczyński A. and Świȩtanowski A. (1997). Accelerating the regularized decomposition method for two-stage stochastic linear problems. Eur. J. Oper. Res. 101: 328–342
Valente C., Mitra G., Sadki M. and Fourer R. (2009). Extending algebraic modelling languages for stochastic programming. INFORMS J. Comput. 21(1): 107–122
Valente, P., Mitra, G., Poojari, C., Ellison, E.F., Di Domenica, N., Mendi, M., Valente, C.: SAMPL/SPInE user manual. OptiRisk Systems. http://www.optirisk-systems.com/manuals/SpineAmplManual.pdf (2008)
Van Slyke R. and Wets R.J.B. (1969). L-shaped linear programs with applications to optimal control and stochastic programming. SIAM J. Appl. Math. 17: 638–663
Wallace, S.W., Ziemba, W.T. (eds.): Applications of Stochastic Programming. Society for Industrial and Applied Mathematic (2005)
Wets R.J.B. (1974). Stochastic programs with fixed recourse: the equivalent deterministic program. SIAM Rev. 16: 309–339
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zverovich, V., Fábián, C.I., Ellison, E.F.D. et al. A computational study of a solver system for processing two-stage stochastic LPs with enhanced Benders decomposition. Math. Prog. Comp. 4, 211–238 (2012). https://doi.org/10.1007/s12532-012-0038-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12532-012-0038-z