[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Spatial dynamics of a vegetation model in an arid flat environment

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

Self-organized vegetation patterns in space were found in arid and semi-arid areas. In this paper, we modelled a vegetation model in an arid flat environment using reaction-diffusion form and investigated the pattern formation. By using Hopf and Turing bifurcation theory, we obtain Turing region in parameters space. It is found that there are different types of stationary patterns including spotted, mixed, and stripe patterns by amplitude equation. Moreover, we discuss the changes of the wavelength with respect to biological parameters. Specifically, the wavelength becomes smaller as rainfall increases and larger as plant morality increases. The results may well explain the vegetation pattern observed in the real world and provide some new insights on preventing from desertification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Klausmeier, C.A.: Regular and irregular patterns in semiarid vegetation. Science 284, 1826–1828 (1999)

    Article  Google Scholar 

  2. Rietkerk, M., van de Koppel, J.: Regular pattern formation in real ecosystems. Trends Ecol. Evol. 23, 169–175 (2007)

    Article  Google Scholar 

  3. Couteron, P., Lejeune, O.: Periodic spotted patterns in semiarid vegetation explained by a propagation-inhibition model. J. Ecol. 89, 616–628 (2001)

    Google Scholar 

  4. HilleRisLambers, R., Rietkerk, M., van den Bosch, F., Prins, H.H.T., de Kroon, H.: Vegetation pattern formation in semiarid grazing systems. Ecology 82, 50–61 (2001)

    Article  Google Scholar 

  5. von Hardenberg, J., Meron, E., Shachak, M., Zarmi, Y.: Diversity of vegetation patterns and desertification. Phys. Rev. Lett. 87, 198101 (2001)

    Article  Google Scholar 

  6. Shnerb, N.M., Sara, P., Lavee, H., Solomon, S.: Reactive glass and vegetation patterns. Phys. Rev. Lett. 90, 038101 (2003)

    Article  Google Scholar 

  7. Barbier, N., Couteron, P., Lejoly, J., Deblauwe, V., Lejeune, O.: Self-organized vegetation patterning as a fingerprint of climate and human impact on semi-arid ecosystems. J. Ecol. 94, 537–547 (2006)

    Google Scholar 

  8. Ursino, N., Rulli, M.C.: Combined effect of fire and water scarcity on vegetation patterns in arid lands. Ecol. Model. 221, 2353–2362 (2010)

    Article  Google Scholar 

  9. Kefi, S., Rietkerk, M., Alados, C.L., Pueyo, Y., Papanastasis, V.P., ElAich, A., de Ruiter, P.C.: Spatial vegetation patterns and imminent desertification in Mediterranean arid ecosystems. Nature 449, 213–217 (2007)

    Article  Google Scholar 

  10. Scheffer, M., Bascompte, J., Brock, W.A., Brovkin, V., Carpenter, S.R., Dakos, V., Held, H., van Nes, E.H., Rietkerk, M., Sugihara, G.: Early-warning signals for critical transitions. Nature 461, 53–59 (2009)

    Article  Google Scholar 

  11. Lade, S.J., Gross, T.: Early warning signals for critical transitions: a generalized modeling approach. PLoS Comput. Biol. 8, e1002360 (2012)

    Article  Google Scholar 

  12. Marinov, K., Wang, T., Yang, Y.: On a vegetation pattern formation model governed by a nonlinear parabolic system. Nonlinear Anal., Real World Appl. 14, 507–525 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ursino, N.: Above and below ground biomass patterns in arid lands. Ecol. Model. 220, 1411–1418 (2009)

    Article  Google Scholar 

  14. Kefi, S., Eppinga, M.B., de Ruiter, P.C., Rietkerk, M.: Bistability and regular spatial patterns in arid ecosystems. Theor. Ecol. 3, 257–269 (2010)

    Article  Google Scholar 

  15. Sheffer, E., von Hardenberg, J., Yizhaq, H., Shachak, M., Meron, E.: Emerged or imposed: a theory on the role of physical templates and self-organisation for vegetation patchiness. Ecol. Lett. 16, 127–139 (2012)

    Article  Google Scholar 

  16. Sherratt, J.A.: History-dependent patterns of whole ecosystems. Ecol. Complex. 14, 8–20 (2013)

    Article  Google Scholar 

  17. Borgogno, F., D’Odorico, P., Laio, F., Ridolfi, L.: Mathematical models of vegetation pattern formation in ecohydrology. Rev. Geophys. 47, RG1005 (2009)

    Article  Google Scholar 

  18. Ouyang, Q.: Pattern Formation in Reaction-Diffusion Systems. Shanghai Sci-Tech Education Publishing House, Shanghai (2000)

    Google Scholar 

  19. Peña, B., Pérez-García, C.: Stability of turing patterns in the Brusselator model. Phys. Rev. E 64, 056213 (2001)

    Article  MathSciNet  Google Scholar 

  20. Rietkerk, M., Boerlijst, M.C., van Langevelde, F., HilleRisLambers, R., van de Koppel, J., Kumar, L., Prins, H.H.T., de Roos, A.M.: Self-organization of vegetation in arid ecosystems. Am. Nat. 160, 524–530 (2002)

    Article  Google Scholar 

  21. Rietkerk, M., Decker, S.C., de Ruiter, P.C., van de Koppel, J.: Self-organized patchiness and catastrophic shift in ecosystems. Science 305, 1926–1929 (2004)

    Article  Google Scholar 

  22. Kealy, B.J., Wollkind, D.J.: A nonlinear stability analysis of vegetative Turing pattern formation for an interaction-diffusion plant-surfacewater model system in an arid flat environment. Bull. Math. Biol. 74, 803–833 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Sherratt, J.A.: An analysis of vegetative stripe formation in semi-arid landscape. J. Math. Biol. 51, 183–197 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sherratt, J.A., Lord, G.J.: Nonlinear dynamics and pattern bifurcations in a model for vegetation stripes in semi-arid environments. Theor. Popul. Biol. 71, 1–11 (2007)

    Article  MATH  Google Scholar 

  25. Dufiet, V., Boissonade, J.: Dynamics of Turing pattern monolayers close to onset. Phys. Rev. E 53, 4883–4892 (1996)

    Article  Google Scholar 

  26. Wang, B., Wang, A.-L., Liu, Y.-J., Liu, Z.-H.: Analysis of a spatial predator-prey model with delay. Nonlinear Dyn. 62, 601–608 (2010)

    Article  MATH  Google Scholar 

  27. Herrmann, H.-J.: Pattern formation of dunes. Nonlinear Dyn. 44, 315–317 (2006)

    Article  MATH  Google Scholar 

  28. Sun, G.-Q., Zhang, G., Jin, Z.: Predator cannibalism can give rise to regular spatial pattern in a predator-prey system. Nonlinear Dyn. 58, 75–84 (2009)

    Article  MATH  Google Scholar 

  29. Sun, G.-Q., Jin, Z., Li, L., Li, B.-L.: Self-organized wave pattern in a predator-prey model. Nonlinear Dyn. 60, 265–275 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pinto, C.M.A., Machado, J.T.A.: Fractional central pattern generators for bipedal locomotion. Nonlinear Dyn. 62, 27–37 (2010)

    Article  MATH  Google Scholar 

  31. Fasani, S., Rinaldi, S.: Remarks on cannibalism and pattern formation in spatially extended prey-predator systems. Nonlinear Dyn. 62, 2543–2548 (2012)

    Article  MathSciNet  Google Scholar 

  32. Cross, M.C., Hohenberg, P.C.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851–1112 (1993)

    Article  Google Scholar 

  33. Sun, G.-Q., Jin, Z., Tan, Q.: Measurement of self-organization in arid ecosystems. J. Biol. Syst. 18, 495–508 (2010)

    Article  MathSciNet  Google Scholar 

  34. Gunaratne, G., Ouyang, Q., Swinney, H.: Pattern formation in the presence of symmetries. Phys. Rev. E 50, 2802 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  35. Manneville, P.: Dissipative Structures and Weak Turbulence. Academic Press, San Diego (2000)

    Google Scholar 

  36. Zhang, X.-C., Sun, G.-Q., Jin, Z.: Spatial dynamics in a predator-prey model with Beddington-DeAngelis functional response. Phys. Rev. E 85, 021924 (2012)

    Article  Google Scholar 

  37. Scheffer, M., Carpenter, S., Foley, J.A., Folke, C., Walker, B.: Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001)

    Article  Google Scholar 

  38. Meron, E., Yizhaq, H., Gilad, E.: Localized structures in dryland vegetation: forms and functions. Chaos 17, 037109 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The research was partially supported by the National Natural Science Foundation of China under Grant No. 11147015, Natural Science Foundation of Shan’Xi Province Grant Nos. 2012021002-1 and 2012011002-2, the opening foundation of the Institute of Information Economy, Hangzhou Normal University, Grant No. PD12001003002003, International and Technical Cooperation Project of Shanxi Province (2010081005) and Graduate Students’ Excellent Innovative Item of Shanxi Province No. 20113107.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Quan Sun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, GQ., Li, L. & Zhang, ZK. Spatial dynamics of a vegetation model in an arid flat environment. Nonlinear Dyn 73, 2207–2219 (2013). https://doi.org/10.1007/s11071-013-0935-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-013-0935-3

Keywords

Navigation