Abstract
In this paper, we present a Holling–Tanner model combined with diffusion and time delay. We found that, when time delay is small, there is no the synchronization of prey and the predator. However, when it is larger, there is antiphase synchronization. Furthermore, a transition from anti-phase synchronization to in-phase synchronization emerges as time delay further increases. Since synchronization of populations could lead them to be extinct, the results obtained may indicate that time delay plays an important role on the persistence of the populations.
Similar content being viewed by others
References
Berryman, A.A.: The origins and evolutions of predator–prey theory. Ecology 73, 1530–1535 (1992)
Zhu, H., Campbell, S.A., Wolkowicz, G.S.K.: Bifurcation analysis of a predator–prey system with nonmonotonic functional response. SIAM J. Appl. Math. 63(2), 636–682 (2003)
Rosenzweig, M.L.: Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171, 385–387 (1971)
Freedman, H.I., Wolkowicz, G.S.K.: Predator-prey systems with group defence: The paradox of enrichment revisited. Bull. Math. Biol. 48, 493–508 (1986)
Sun, G.-Q., Zhang, G., Jin, Z., Li, L.: Predator cannibalism can give rise to regular spatial pattern in a predator-prey system. Nonlinear Dyn. 58, 75–84 (2009)
Murray, J.D.: Mathematical Biology II: Spatial Models and Biomedical Applications. Springer, New York (2003)
Braza, P.A.: The bifurcation structure of the holling-tanner model for predator–prey interactions using two-timing. SIAM J. Appl. Math. 63, 889–904 (2003)
Collings, J.B.: Bifurcation and stability analysis of a temperature-dependent mite predator–prey interaction model incorporating a prey refuge. Bull. Math. Biol. 57, 63–76 (1995)
Hsu, S.B., Huang, T.W.: Global stability for a class of predator-prey systems. SIAM J. Appl. Math. 55, 763–783 (1995)
Wollkind, D., Collings, J., Logan, J.: Metastability in a temperature-dependent model system for predator prey mite outbreak interactions on fruit flies. Bull. Math. Biol. 50, 379–409 (1988)
May, R.M.: Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton (1973)
Haque, M., Venturino, E.: The role of transmissible diseases in the Holling–Tanner predator–prey model. Theor. Popul. Biol. 70, 273–288 (2006)
Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Academic Press, San Diego (1993)
Xiao, Y., Chen, L.: Modelling and analysis of a predator-prey model with disease in the prey. Math. Biosci. 171, 59–82 (2001)
Ruan, S., Ardito, A., Ricciardi, P., Angelis, D.D.: Coexistence in competition models with density dependent mortality. C. R. Biol. 330, 845–854 (2007)
Kar, T., Batabyal, A.: Stability and bifurcation of a prey-predator model with time delay. C. R. Biol. 332, 642–651 (2009)
Sun, G.-Q., Jin, Z., Liu, Q.-X., Li, L.: Dynamical complexity of a spatial predator–prey model with migration. Ecol. Model. 219, 248–255 (2008)
Wang, R.-H., Liu, Q.-X., Sun, G.-Q., Jin, Z., van de Koppel, J.: Nonlinear dynamic and pattern bifurcations in a model for spatial patterns in young mussel beds. J. R. Soc. Interface 6(37), 705–718 (2009)
Hooper, D.U., Chapin, F.S., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J.H., Lodge, D.M., Loreau, M., Naeem, S., Schmid, B., SetaLa, H., Symstad, A.J., Vandermeer, J., Wardle, D.A.: Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75(1), 3–35 (2005)
Chesson, P.: Mechanisms of maintenance of species diversity. Ann. Rev. Ecol. Syst. 31, 343–366 (1991)
Hassell, M.P., Comins, H.N., Mayt, R.M.: Spatial structure and chaos in insect population dynamics. Nature 353, 255–258 (1991)
Polis, G.A., Anderson, W.B., Holt, R.D.: Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Ann. Rev. Ecol. Syst. 28, 289–316 (1997)
Lima, S.L.: Putting predators back into behavioral predator-prey interactions. Trends Ecol. Evol. 17, 70–75 (2002)
Pascual, M.: Diffusion-induced chaos in a spatial predator-prey system. Proc. R. Soc. Lond. B 251, 1–7 (1993)
Petrovskii, S., Li, B.-L., Malchow, H.: Transition to spatiotemporal chaos can resolve the paradox of enrichment. Ecol. Complex. 1, 37–47 (2004)
Namba, T., Hashimoto, C.: Dispersal-mediated coexistence of competing predators. Theor. Popul. Biol. 66, 53–70 (2004)
Morozov, A., Li, B.-L.: On the importance of dimensionality of space in models of space-mediated population persistence. Theor. Popul. Biol. 71, 278–289 (2007)
Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization. Cambridge University Press, Cambridge (2001)
Elton, C.S.: Periodic fluctuations in the numbers of animals. Br. J. Exp. Biol. 2, 119–163 (1924)
Elton, C.S., Nicholson, M.: The ten-year cycle in numbers of the lynx in Canada. J. Anim. Ecol. 11, 215–244 (1942)
Moran, P.A.P.: The statistical analysis of the canadian lynx cycle. ii. Synchronisation and meteorology. Aust. J. Zool. 1, 291–298 (1953)
Bulmer, M.G.: A statistical analysis of the 10-year cycle in Canada. J. Anim. Ecol. 43, 701–718 (1974)
Smith, C.H.: Spatial trends in canadian snowshoe hare lepus americanus, population cycles. Can. Field-Nat. 97, 151–160 (1983)
Sinclair, A.R.E., Goseline, J.M., Holdsworth, G., Krebs, C.J., Boutin, S., Smith, N.M., Boonstra, R., Dale, M.: Can the solar cycle and climate synchronize the snowshoe hare cycle in Canada? Evidence from tree rings and ice cores. Am. Nat. 141, 173–198 (1993)
Ranta, E., Kaitala, V., Lindstrom, J., Helle, E.: The Moran effect and synchrony in population dynamics. Oikos 78, 136–142 (1997)
Colombo, A., Dercole, F., Rinaldi, S.: Remarks on metacommunity synchronization with application to prey-predator systems. Am. Nat. 171, 430–442 (2008)
Sun, G.-Q., Jin, Z., Liu, Q.-X., Li, L.: Pattern formation induced by cross-diffusion in a predator–prey system. Chin. Phys. B 17, 3936–3941 (2008)
Holling, C.: The functional response of invertebrate predators to prey density. Mem. Entomol. Soc. Can. 45, 3–60 (1965)
May, R.: Limit cycles in predator–prey communities. Science 177, 900–902 (1972)
Saez, E., Gonzelez-Olivares, E.: Dynamics of a predator-prey model. SIAM J. Appl. Math. 59, 1867–1878 (1999)
Tanner, J.: The stability and intrinsic growth rates of prey and predator populations. Ecology 56, 855–867 (1975)
Underwood, N.C.: The timing of induced resistance and induced susceptibility in the soybean-mexican bean beetle system. Oecologia 114, 376–381 (1998)
Koenig, W.D.: Spatial autocorrelation of ecological phenomena. Trends Ecol. Evol. 14, 22–26 (1999)
Liebhold, A.M., Koenig, W.D., Bjonstad, O.N.: Spatial synchrony in population dynamics. Ann. Rev. Ecol. Evol. Syst. 35, 467–490 (2004)
Higgins, K., Hastings, A., Sarvela, J.N., Botsford, L.W.: Stochastic dynamics and deterministic skeletons: population behavior of dungeness crab. Science 276, 1431–1435 (1997)
Grenfell, B.T., Wilson, K., Finkenstadt, B.F., Coulson, T.N., Murray, S., Albon, S.D., Pemberton, J.M., Clutton-Brock, T.H., Crawley, M.J.: Noise and determinism in synchronized sheep dynamics. Nature 394, 674–677 (1998)
Post, E., Forchhammer, M.C.: Synchronization of animal population dynamics by large-scale climate. Nature 420, 168–171 (2002)
Allen, J., Schaffer, W., Rosko, D.: Chaos reduces species extinction by amplifying local population noise. Nature 364, 229–232 (1993)
Beretta, E., Takeuchi, Y.: Global asymptotic stability of Lotka–Volterra diffusion models with continuous time delay. SIAM J. Appl. Math. 48, 627–651 (1988)
Beretta, E., Solimano, F., Takeuchi, Y.: Global stability and periodic orbits for two-patch predator–prey diffusion–delay models. Math. Biosci. 85, 153–183 (1987)
Zhou, L., Tang, Y., Hussein, S.: Stability and Hopf bifurcation for a delay competition diffusion system. Chaos Solitons Fractals 14, 1201–1225 (2002)
Su, Y., Wei, J., Shi, J.: Hopf bifurcations in a reaction-diffusion population model with delay effect. J. Differ. Equ. 247, 1156–1184 (2009)
Crauste, F., Hbid, M.L., Kacha, A.: A delay reaction-diffusion model of the dynamics of botulinum in fish. Math. Biosci. 216, 17–29 (2008)
Morozov, A., Petrovskii, S., Li, B.-L.: Spatiotemporal complexity of patchy invasion in a predator–prey system with the allee effect. J. Theor. Biol. 238, 18–35 (2006)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wang, B., Wang, AL., Liu, YJ. et al. Analysis of a spatial predator-prey model with delay. Nonlinear Dyn 62, 601–608 (2010). https://doi.org/10.1007/s11071-010-9747-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11071-010-9747-x