[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Analysis of a spatial predator-prey model with delay

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

In this paper, we present a Holling–Tanner model combined with diffusion and time delay. We found that, when time delay is small, there is no the synchronization of prey and the predator. However, when it is larger, there is antiphase synchronization. Furthermore, a transition from anti-phase synchronization to in-phase synchronization emerges as time delay further increases. Since synchronization of populations could lead them to be extinct, the results obtained may indicate that time delay plays an important role on the persistence of the populations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berryman, A.A.: The origins and evolutions of predator–prey theory. Ecology 73, 1530–1535 (1992)

    Article  Google Scholar 

  2. Zhu, H., Campbell, S.A., Wolkowicz, G.S.K.: Bifurcation analysis of a predator–prey system with nonmonotonic functional response. SIAM J. Appl. Math. 63(2), 636–682 (2003)

    Article  MathSciNet  Google Scholar 

  3. Rosenzweig, M.L.: Paradox of enrichment: destabilization of exploitation ecosystems in ecological time. Science 171, 385–387 (1971)

    Article  Google Scholar 

  4. Freedman, H.I., Wolkowicz, G.S.K.: Predator-prey systems with group defence: The paradox of enrichment revisited. Bull. Math. Biol. 48, 493–508 (1986)

    MATH  MathSciNet  Google Scholar 

  5. Sun, G.-Q., Zhang, G., Jin, Z., Li, L.: Predator cannibalism can give rise to regular spatial pattern in a predator-prey system. Nonlinear Dyn. 58, 75–84 (2009)

    Article  MATH  Google Scholar 

  6. Murray, J.D.: Mathematical Biology II: Spatial Models and Biomedical Applications. Springer, New York (2003)

    MATH  Google Scholar 

  7. Braza, P.A.: The bifurcation structure of the holling-tanner model for predator–prey interactions using two-timing. SIAM J. Appl. Math. 63, 889–904 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. Collings, J.B.: Bifurcation and stability analysis of a temperature-dependent mite predator–prey interaction model incorporating a prey refuge. Bull. Math. Biol. 57, 63–76 (1995)

    MATH  Google Scholar 

  9. Hsu, S.B., Huang, T.W.: Global stability for a class of predator-prey systems. SIAM J. Appl. Math. 55, 763–783 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  10. Wollkind, D., Collings, J., Logan, J.: Metastability in a temperature-dependent model system for predator prey mite outbreak interactions on fruit flies. Bull. Math. Biol. 50, 379–409 (1988)

    MATH  MathSciNet  Google Scholar 

  11. May, R.M.: Stability and Complexity in Model Ecosystems. Princeton University Press, Princeton (1973)

    Google Scholar 

  12. Haque, M., Venturino, E.: The role of transmissible diseases in the Holling–Tanner predator–prey model. Theor. Popul. Biol. 70, 273–288 (2006)

    Article  MATH  Google Scholar 

  13. Kuang, Y.: Delay Differential Equations with Applications in Population Dynamics. Academic Press, San Diego (1993)

    MATH  Google Scholar 

  14. Xiao, Y., Chen, L.: Modelling and analysis of a predator-prey model with disease in the prey. Math. Biosci. 171, 59–82 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Ruan, S., Ardito, A., Ricciardi, P., Angelis, D.D.: Coexistence in competition models with density dependent mortality. C. R. Biol. 330, 845–854 (2007)

    Article  Google Scholar 

  16. Kar, T., Batabyal, A.: Stability and bifurcation of a prey-predator model with time delay. C. R. Biol. 332, 642–651 (2009)

    Article  Google Scholar 

  17. Sun, G.-Q., Jin, Z., Liu, Q.-X., Li, L.: Dynamical complexity of a spatial predator–prey model with migration. Ecol. Model. 219, 248–255 (2008)

    Article  Google Scholar 

  18. Wang, R.-H., Liu, Q.-X., Sun, G.-Q., Jin, Z., van de Koppel, J.: Nonlinear dynamic and pattern bifurcations in a model for spatial patterns in young mussel beds. J. R. Soc. Interface 6(37), 705–718 (2009)

    Google Scholar 

  19. Hooper, D.U., Chapin, F.S., Ewel, J.J., Hector, A., Inchausti, P., Lavorel, S., Lawton, J.H., Lodge, D.M., Loreau, M., Naeem, S., Schmid, B., SetaLa, H., Symstad, A.J., Vandermeer, J., Wardle, D.A.: Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75(1), 3–35 (2005)

    Article  Google Scholar 

  20. Chesson, P.: Mechanisms of maintenance of species diversity. Ann. Rev. Ecol. Syst. 31, 343–366 (1991)

    Article  Google Scholar 

  21. Hassell, M.P., Comins, H.N., Mayt, R.M.: Spatial structure and chaos in insect population dynamics. Nature 353, 255–258 (1991)

    Article  Google Scholar 

  22. Polis, G.A., Anderson, W.B., Holt, R.D.: Toward an integration of landscape and food web ecology: the dynamics of spatially subsidized food webs. Ann. Rev. Ecol. Syst. 28, 289–316 (1997)

    Article  Google Scholar 

  23. Lima, S.L.: Putting predators back into behavioral predator-prey interactions. Trends Ecol. Evol. 17, 70–75 (2002)

    Article  Google Scholar 

  24. Pascual, M.: Diffusion-induced chaos in a spatial predator-prey system. Proc. R. Soc. Lond. B 251, 1–7 (1993)

    Article  Google Scholar 

  25. Petrovskii, S., Li, B.-L., Malchow, H.: Transition to spatiotemporal chaos can resolve the paradox of enrichment. Ecol. Complex. 1, 37–47 (2004)

    Article  Google Scholar 

  26. Namba, T., Hashimoto, C.: Dispersal-mediated coexistence of competing predators. Theor. Popul. Biol. 66, 53–70 (2004)

    Article  MATH  Google Scholar 

  27. Morozov, A., Li, B.-L.: On the importance of dimensionality of space in models of space-mediated population persistence. Theor. Popul. Biol. 71, 278–289 (2007)

    Article  MATH  Google Scholar 

  28. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  29. Elton, C.S.: Periodic fluctuations in the numbers of animals. Br. J. Exp. Biol. 2, 119–163 (1924)

    Google Scholar 

  30. Elton, C.S., Nicholson, M.: The ten-year cycle in numbers of the lynx in Canada. J. Anim. Ecol. 11, 215–244 (1942)

    Article  Google Scholar 

  31. Moran, P.A.P.: The statistical analysis of the canadian lynx cycle. ii. Synchronisation and meteorology. Aust. J. Zool. 1, 291–298 (1953)

    Article  Google Scholar 

  32. Bulmer, M.G.: A statistical analysis of the 10-year cycle in Canada. J. Anim. Ecol. 43, 701–718 (1974)

    Article  Google Scholar 

  33. Smith, C.H.: Spatial trends in canadian snowshoe hare lepus americanus, population cycles. Can. Field-Nat. 97, 151–160 (1983)

    Google Scholar 

  34. Sinclair, A.R.E., Goseline, J.M., Holdsworth, G., Krebs, C.J., Boutin, S., Smith, N.M., Boonstra, R., Dale, M.: Can the solar cycle and climate synchronize the snowshoe hare cycle in Canada? Evidence from tree rings and ice cores. Am. Nat. 141, 173–198 (1993)

    Article  Google Scholar 

  35. Ranta, E., Kaitala, V., Lindstrom, J., Helle, E.: The Moran effect and synchrony in population dynamics. Oikos 78, 136–142 (1997)

    Article  Google Scholar 

  36. Colombo, A., Dercole, F., Rinaldi, S.: Remarks on metacommunity synchronization with application to prey-predator systems. Am. Nat. 171, 430–442 (2008)

    Article  Google Scholar 

  37. Sun, G.-Q., Jin, Z., Liu, Q.-X., Li, L.: Pattern formation induced by cross-diffusion in a predator–prey system. Chin. Phys. B 17, 3936–3941 (2008)

    Article  Google Scholar 

  38. Holling, C.: The functional response of invertebrate predators to prey density. Mem. Entomol. Soc. Can. 45, 3–60 (1965)

    Google Scholar 

  39. May, R.: Limit cycles in predator–prey communities. Science 177, 900–902 (1972)

    Article  Google Scholar 

  40. Saez, E., Gonzelez-Olivares, E.: Dynamics of a predator-prey model. SIAM J. Appl. Math. 59, 1867–1878 (1999)

    Article  Google Scholar 

  41. Tanner, J.: The stability and intrinsic growth rates of prey and predator populations. Ecology 56, 855–867 (1975)

    Article  Google Scholar 

  42. Underwood, N.C.: The timing of induced resistance and induced susceptibility in the soybean-mexican bean beetle system. Oecologia 114, 376–381 (1998)

    Article  Google Scholar 

  43. Koenig, W.D.: Spatial autocorrelation of ecological phenomena. Trends Ecol. Evol. 14, 22–26 (1999)

    Article  Google Scholar 

  44. Liebhold, A.M., Koenig, W.D., Bjonstad, O.N.: Spatial synchrony in population dynamics. Ann. Rev. Ecol. Evol. Syst. 35, 467–490 (2004)

    Article  Google Scholar 

  45. Higgins, K., Hastings, A., Sarvela, J.N., Botsford, L.W.: Stochastic dynamics and deterministic skeletons: population behavior of dungeness crab. Science 276, 1431–1435 (1997)

    Article  Google Scholar 

  46. Grenfell, B.T., Wilson, K., Finkenstadt, B.F., Coulson, T.N., Murray, S., Albon, S.D., Pemberton, J.M., Clutton-Brock, T.H., Crawley, M.J.: Noise and determinism in synchronized sheep dynamics. Nature 394, 674–677 (1998)

    Article  Google Scholar 

  47. Post, E., Forchhammer, M.C.: Synchronization of animal population dynamics by large-scale climate. Nature 420, 168–171 (2002)

    Article  Google Scholar 

  48. Allen, J., Schaffer, W., Rosko, D.: Chaos reduces species extinction by amplifying local population noise. Nature 364, 229–232 (1993)

    Article  Google Scholar 

  49. Beretta, E., Takeuchi, Y.: Global asymptotic stability of Lotka–Volterra diffusion models with continuous time delay. SIAM J. Appl. Math. 48, 627–651 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  50. Beretta, E., Solimano, F., Takeuchi, Y.: Global stability and periodic orbits for two-patch predator–prey diffusion–delay models. Math. Biosci. 85, 153–183 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  51. Zhou, L., Tang, Y., Hussein, S.: Stability and Hopf bifurcation for a delay competition diffusion system. Chaos Solitons Fractals 14, 1201–1225 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  52. Su, Y., Wei, J., Shi, J.: Hopf bifurcations in a reaction-diffusion population model with delay effect. J. Differ. Equ. 247, 1156–1184 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  53. Crauste, F., Hbid, M.L., Kacha, A.: A delay reaction-diffusion model of the dynamics of botulinum in fish. Math. Biosci. 216, 17–29 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  54. Morozov, A., Petrovskii, S., Li, B.-L.: Spatiotemporal complexity of patchy invasion in a predator–prey system with the allee effect. J. Theor. Biol. 238, 18–35 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Jiang Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, B., Wang, AL., Liu, YJ. et al. Analysis of a spatial predator-prey model with delay. Nonlinear Dyn 62, 601–608 (2010). https://doi.org/10.1007/s11071-010-9747-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-010-9747-x

Keywords

Navigation