Abstract
We exhibit a probabilistic symbolic algorithm for solving zero-dimensional sparse systems. Our algorithm combines a symbolic homotopy procedure, based on a flat deformation of a certain morphism of affine varieties, with the polyhedral deformation of Huber and Sturmfels. The complexity of our algorithm is cubic in the size of the combinatorial structure of the input system. This size is mainly represented by the cardinality and mixed volume of Newton polytopes of the input polynomials and an arithmetic analogue of the mixed volume associated to the deformations under consideration.
Similar content being viewed by others
References
E.L. Allgower, K. Georg, Numerical Continuation Methods: An Introduction. Springer Ser. Comput. Math., vol. 13 (Springer, New York, 1990).
M.E. Alonso, E. Becker, M.-F. Roy, T. Wörmann, Zeros, multiplicities and idempotents for zero-dimensional systems, in Algorithms in Algebraic Geometry and Applications, Proceedings of MEGA’94. Prog. Math., vol. 143 (Birkhäuser, Boston, 1996), pp. 1–15.
J.L. Balcázar, J. Díaz, J. Gabarró, Structural Complexity I. Monogr. Theor. Comput. Sci. EATCS Ser., vol. 11 (Springer, Berlin, 1988).
W. Baur, V. Strassen, The complexity of partial derivatives, Theor. Comput. Sci. 22, 317–330 (1983).
D.N. Bernstein, The number of roots of a system of equations, Funct. Anal. Appl. 9, 183–185 (1975).
D. Bini, V. Pan, Polynomial and Matrix Computations. Progress in Theoretical Computer Science (Birkhäuser, Boston, 1994).
L. Blum, F. Cucker, M. Shub, S. Smale, Complexity and Real Computation (Springer, New York, 1998).
A. Bompadre, G. Matera, R. Wachenchauzer, A. Waissbein, Polynomial equation solving by lifting procedures for ramified fibers, Theoret. Comput. Sci. 315(2–3), 335–369 (2004).
A. Bostan, G. Lecerf, E. Schost, Tellegen’s principle into practice, in Proceedings of the International Symposium on Symbolic and Algebraic Computation (ISSAC’03), Philadelphia, PA, 3–6 August 2003, ed. by J.R. Sendra (ACM Press, New York, 2003), pp. 37–44.
A. Bostan, E. Schost, Polynomial evaluation and interpolation on special sets of points, J. Complexity 21(4), 420–446 (2005).
P. Bürgisser, M. Clausen, M.A. Shokrollahi, Algebraic Complexity Theory. Grundlehren Math. Wiss., vol. 315 (Springer, Berlin, 1997).
A. Cafure, G. Matera, A. Waissbein, Inverting bijective polynomial maps over finite fields, in Proceedings of the 2006 Information Theory Workshop, ITW2006, Punta del Este, Uruguay, 13–17 March 2006, ed. by G. Seroussi, A. Viola (IEEE Information Theory Society, New York, 2006), pp. 27–31.
D. Castro, M. Giusti, J. Heintz, G. Matera, L.M. Pardo, The hardness of polynomial equation solving, Found. Comput. Math. 3(4), 347–420 (2003).
D. Cox, J. Little, D. O’Shea, Using Algebraic Geometry. Grad. Texts in Math., vol. 185 (Springer, New York, 1998).
J.-P. Dedieu, Condition number analysis for sparse polynomial systems, in Foundations of Computational Mathematics, Rio de Janeiro, 1997, ed. by F. Cucker, M. Shub (Springer, Berlin, 1997), pp. 267–276.
C. Durvye, G. Lecerf, A concise proof of the Kronecker polynomial system solver from scratch, Exp. Math. (2006, in press). doi:10.1016/j.expmath.2007.07.001.
I.Z. Emiris, J. Canny, Efficient incremental algorithms for the sparse resultant and the mixed volume, J. Symb. Comput. 20, 117–149 (1995).
G. Ewald, Combinatorial Convexity and Algebraic Geometry. Grad. Texts in Math., vol. 168 (Springer, New York, 1996).
I.M. Gelfand, M.M. Kapranov, A.V. Zelevinsky, Discriminants, Resultants, and Multidimensional Determinants (Birkhäuser, Boston, 1994).
M. Giusti, K. Hägele, J. Heintz, J.E. Morais, J.L. Montaña, L.M. Pardo, Lower bounds for Diophantine approximation, J. Pure Appl. Algebra 117–118, 277–317 (1997).
M. Giusti, J. Heintz, J.E. Morais, J. Morgenstern, L.M. Pardo, Straight-line programs in geometric elimination theory, J. Pure Appl. Algebra 124, 101–146 (1998).
M. Giusti, G. Lecerf, B. Salvy, A Gröbner free alternative for polynomial system solving, J. Complex. 17(1), 154–211 (2001).
J. Heintz, On the computational complexity of polynomials and bilinear maps, in Proceedings of the 5th International Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, AAECC-5, Menorca, Spain, 15–19 June 1987, ed. by L. Huguet, A. Poli. Lecture Notes in Comput. Sci., vol. 356 (Springer, Berlin, 1989), pp. 269–300.
J. Heintz, G. Jeronimo, J. Sabia, P. Solernó, Intersection theory and deformation algorithms. The multihomogeneous case, Manuscript, Universidad de Buenos Aires, 2002.
J. Heintz, T. Krick, S. Puddu, J. Sabia, A. Waissbein, Deformation techniques for efficient polynomial equation solving, J. Complex. 16(1), 70–109 (2000).
B. Huber, B. Sturmfels, A polyhedral method for solving sparse polynomial systems, Math. Comput. 64(212), 1541–1555 (1995).
B. Huber, B. Sturmfels, Bernstein’s theorem in affine space, Discrete Comput. Geom. 17, 137–141 (1997).
G. Jeronimo, T. Krick, J. Sabia, M. Sombra, The computational complexity of the Chow form, Found. Comput. Math. 4(1), 41–117 (2004).
A.G. Khovanski, Newton polyhedra and the genus of complete intersections, Funct. Anal. Appl. 12, 38–46 (1978).
A.G. Kushnirenko, Newton polytopes and the Bézout theorem, Funct. Anal. Appl. 10, 233–235 (1976).
G. Lecerf, Quadratic Newton iteration for systems with multiplicity, Found. Comput. Math. 2(3), 247–293 (2002).
G. Lecerf, Computing the equidimensional decomposition of an algebraic closed set by means of lifting fibers, J. Complex. 19(4), 564–596 (2003).
T.-Y. Li, X. Li, Finding mixed cells in the mixed volume computation, Found. Comput. Math. 1(2), 161–181 (2001).
T.Y. Li, Numerical solution of multivariate polynomial systems by homotopy continuation methods, Acta Numer. 6, 399–436 (1997).
T.Y. Li, X. Wang, The BKK root count in ℂn, Math. Comput. 65(216), 1477–1484 (1996).
G. Malajovich, J.M. Rojas, High probability analysis of the condition number of sparse polynomial systems, Theor. Comput. Sci. 315(2–3), 525–555 (2004).
A. Morgan, Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems (Prentice-Hall, Englewood Cliffs, 1987).
A. Morgan, A. Sommese, C. Wampler, A generic product–decomposition formula for Bézout numbers, SIAM J. Numer. Anal. 32, 1308–1325 (1995).
M. Oka, Non-Degenerate Complete Intersection Singularity (Hermann, Paris, 1997).
L.M. Pardo, How lower and upper complexity bounds meet in elimination theory, in Applied Algebra, Algebraic Algorithms and Error Correcting Codes, Proceedings of AAECC-11, ed. by G. Cohen, M. Giusti, T. Mora. Lecture Notes in Comput. Sci., vol. 948 (Springer, Berlin, 1995), pp. 33–69.
L.M. Pardo, J. San Martín, Deformation techniques to solve generalized Pham systems, Theoret. Comput. Sci. 315(2–3), 593–625 (2004).
P. Pedersen, B. Sturmfels, Product formulas for resultants and Chow forms, Math. Z. 214(3), 377–396 (1993).
P. Philippon, M. Sombra, Hauteur normalisée des variétés toriques projectives, J. Inst. Math. Jussieu (2003, in press). doi:10.1017/S1474748007000138, 35pp., eprint math.NT/0406476.
P. Philippon, M. Sombra, Géométrie Diophantienne et variétés toriques, C. R. Math. Acad. Sci. Paris 340, 507–512 (2005).
P. Philippon, M. Sombra, A refinement of the Kušnirenko–Bernštein estimate, Manuscript, 2006. arXiv:0709.3306.
J.M. Rojas, Solving degenerate sparse polynomial systems faster, J. Symbolic Comput. 28(1/2), 155–186 (1999).
J.M. Rojas, Algebraic geometry over four rings and the frontier of tractability, in Proceedings of a Conference on Hilbert’s Tenth Problem and Related Subjects, University of Gent, 1–5 November 1999, ed. by J. Denef et al. Contemp. Math., vol. 270 (AMS, Providence, 2000), pp. 275–321
J.M. Rojas, Why polyhedra matter in non-linear equation solving, in Proceedings of the Conference on Algebraic Geometry and Geometric Modelling, Vilnius, Lithuania, 29 July–2 August 2002. Contemp. Math., vol. 334 (AMS, Providence, 2003), pp. 293–320.
J.M. Rojas, X. Wang, Counting affine roots of polynomial systems via pointed Newton polytopes, J. Complex. 12(2), 116–133 (1996).
J. Sabia, P. Solernó, Bounds for traces in complete intersections and degrees in the Nullstellensatz, Appl. Algebra Eng. Commun. Comput. 6(6), 353–376 (1996).
J.E. Savage, Models of Computation. Exploring the Power of Computing (Addison-Wesley, Reading, 1998).
E. Schost, Computing parametric geometric resolutions, Appl. Algebra Eng. Commun. Comput. 13, 349–393 (2003).
A. Sommese, C. Wampler, The Numerical Solution of Systems of Polynomials Arising in Engineering and Science (World Scientific, Singapore, 2005).
A. Storjohann, Algorithms for matrix canonical forms, Ph.D. thesis, ETH, Zürich, Switzerland, 2000.
V. Strassen, Algebraic complexity theory, in Handbook of Theoretical Computer Science, ed. by J. van Leeuwen (Elsevier, Amsterdam, 1990), pp. 634–671.
J. Verschelde, K. Gatermann, R. Cools, Mixed volume computation by dynamic lifting applied to polynomial system solving, Discrete Comput. Geom. 16(1), 69–112 (1996).
J. Verschelde, P. Verlinden, R. Cools, Homotopies exploiting Newton polytopes for solving sparse polynomial systems, SIAM J. Numer. Anal. 31(3), 915–930 (1994).
J. von zur Gathen, Parallel arithmetic computations: a survey, in Proceedings of the 12th International Symposium on Mathematical Foundations of Computer Science, Bratislava, Czechoslovakia, 25–29 August 1986, ed. by J. Gruska, B. Rovan, J. Wiedermann. Lecture Notes in Comput. Sci., vol. 233 (Springer, Berlin, 1986), pp. 93–112.
J. von zur Gathen, J. Gerhard, Modern Computer Algebra (Cambridge University Press, Cambridge, 1999).
R.J. Walker, Algebraic Curves (Dover, New York, 1950).
R. Zippel, Effective Polynomial Computation. Kluwer Int. Ser. Eng. Comput. Sci., vol. 241 (Kluwer, Dordrecht, 1993).
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Mike Shub.
Research was partially supported by the following grants: UBACyT X112 (2004–2007), UBACyT X847 (2006–2009), PIP CONICET 2461, PIP CONICET 5852/05, ANPCyT PICT 2005 17-33018, UNGS 30/3005, MTM2004-01167 (2004–2007), MTM2007-62799 and CIC 2007–2008.
Rights and permissions
About this article
Cite this article
Jeronimo, G., Matera, G., Solernó, P. et al. Deformation Techniques for Sparse Systems. Found Comput Math 9, 1–50 (2009). https://doi.org/10.1007/s10208-008-9024-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10208-008-9024-2
Keywords
- Sparse system solving
- Symbolic homotopy algorithms
- Polyhedral deformations
- Mixed volume
- Non-Archimedean height
- Puiseux expansions of space curves
- Newton–Hensel lifting
- Geometric solutions
- Probabilistic algorithms
- Complexity