Abstract
The aim of this paper is to present a flexible approach for the efficient computation of the mixed volume of a tuple of polytopes. In order to compute the mixed volume, a mixed subdivision of the tuple of polytopes is needed, which can be obtained by embedding the polytopes in a higher-dimensional space, i.e., by lifting them. Dynamic lifting is opposed to the static approach. This means that one considers one point at a time and only fixes the value of the lifting function when the point really influences the mixed volume. Conservative lifting functions have been developed for this purpose. This provides us with a deterministic manipulation of the lifting for computing mixed volumes, which rules out randomness conditions. Cost estimates for the algorithm are given. The implications of dynamic lifting on polyhedral homotopy methods for the solution of polynomial systems are investigated and applications are presented.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
D. Avis and K. Fukuda. A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra.Discrete Comput Geom., 8(3):295–313, 1992.
J. Backelin and R. Fröberg. How we proved that there are exactly 924 cyclic 7-roots.Proceedings of ISSAC-91, pages 103–111, ACM, New York, 1991.
D. N. Bernshteîn. The number of roots of a system of equations.Functional Anal. Appl., 9(3):183–185, 1975. Translated fromFunksional. Anal. i Prilozhen., 9(3):1–4, 1975.
M. Grötschel, L. Lovász, and A. Schrijver.Geometric Algorithms and Combinatorial Optimization. Algorithms and Combinatorics, volume 2. Springer-Verlag, Berlin, 1988.
L. J. Guibas, D. E. Knuth, and M. Sharir. Randomized incremental construction of Delaunay and Voronoi diagrams.Algorithmica, 7(4):381–413, 1992.
B. Huber. Numerically solving sparce polynomial systems. Presented at AMS-IMS-SIAM Summer Research Conference on Continuous Algorithms and Complexity, Mount Holyoke College, South Hadley, MA, June 1994.
B. Huber and B. Sturmfels. A polyhedral method for solving sparse polynomial systems.Math. Comp., 64(212):1541–1555, 1995.
M. M. Kapranov, B. Sturmfels, and A. V. Zelevinsky. Chow polytopes and general resultants.Duke Math. J., 67(1):189–218, 1992.
A. G. Khovanskiî. Newton polyhedra and the genus of complete intersections.Functional Anal. Appl. 12(1):38–46, 1978. Translated fromFunktsional. Anal. i Prilozhen., 12(1), 51–61, 1978.
A. G. Kushnirenko. Newton polytopes and the Bézout theorem.Functional Anal. Appl., 10(3):233–235, 1976. Translated fromFunktsional. Anal. i Prilozhen., 10(3), 82–83, 1976.
S. R. Lay,Convex Sets and Their Applications, Wiley, New York, 1982.
C. W. Lee. Regular triangulations of convex polytopes. In P. Gritzmann and B. Sturmfels, editors,Applied Geometry and Discrete Mathematics—The Victor Klee Festschrift, pages 443–456. DIMACS Series, volume 4, AMS, Providence, RI, 1991.
A. Morgan.Solving Polynomial Systems Using Continuation for Engineering and Scientific Problems. Prentice-Hall, Englewood Cliffs, NJ, 1987.
A. Morgan and V. Shapiro. Box-bisection for solving second-degree systems and the problem of clustering.ACM Trans. Math. Software, 13(2):152–167, 1987.
A. P. Morgan and A. J. Sommese. Coefficient-parameter polynomial continuation.Appl. Math. Comput., 29(2):123–160, 1989. Errata: 51:207, 1992.
A. P. Morgan, A. J. Sommese and C. W. Wampler. A product-decomposition theorem for bounding Bézout numbers.SIAM J. Numer. Anal., 32(4):1308–1325, 1995.
A. P. Morgan, A. Sommese and L. T. Watson. Mathematical reduction of a heart dipole model.J. Comput. Appl. Math., 27:407–410, 1989.
C. V. Nelsen and B. C. Hodgkin. Determination of magnitudes, directions, and locations of two independent dipoles in a circular conducting region from boundary potential measurements.IEEE Trans. Biomed. Engrg., 28(12):817–823, 1981.
P. Pedersen. Private communication, 1994.
F. P. Preparata and M. I. Shamos.Computational Geometry: An Introduction. Springer-Verlag, Berlin, 1985.
J. M. Rojas. A convex geometric approach to counting the roots of a polynomial system.Theoret. Comput. Sci., 133(1):105–140, 1994.
R. Schneider. Polytopes and Brunn-Minkowski theory. In R. Schneider, T. Bisztriczky, P. McMullen, and A. I. Weiss, editors.Polytopes: Abstract, Convex and Computational, pages 273–300. Kluwer, Boston, MA, 1994.
A. Schrijver.Theory of Linear and Integer Programming. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, Chichester, 1986.
M. Shub and S. Smale. Complexity of Bézout's theorem, I: Geometric aspects.J. Amer. Math. Soc. 6(2):459–501, 1993.
B. Sturmfels. On the Newton polytope of the resultant.J. Algebraic Combin., 3:207–236, 1994.
J. Verschelde and R. Cools. Symbolic homotopy construction.Appl. Algebra Engrg. Commun. Comput., 4(3):169–183, 1993.
J. Verschelde and K. Gatermann. Symmetric Newton polytopes for solving sparse polynomial systems.Adv. in Appl. Math., 16(1):95–127, 1995.
J. Verschelde and A. Haegemans. Homotopies for solving polynomial systems within a bounded domain.Theoret. Comput. Sci., 133(1):141–161, 1994.
J. Verschelde, P. Verlinden, and R. Cools. Homotopies exploiting Newton polytopes for solving sparse polynomial systems.SIAM J. Numer. Anal., 31(3):915–930, 1994.
C. W. Wampler. Bézout number calculations for multi-homogeneous polynomial systems.Appl. Math. Comput., 51(2–3):143–157, 1992.
U. Betke. Mixed volumes of polytopes.Arch. Math.,58:388–391, 1992.
L. J. Billera and B. Sturmfels. Fiber polytopes,Ann of Math., 135(3):527–549, 1992.
G. Björk and R. Fröberg. A faster way to count the solutions of inhomogeneous systems of algebraic equations, with applications to cyclicn-roots.J. Symbolic Comput. 12(3):329–336, 1991.
G. Björk and R. Fröberg. Methods to “divide out” certain solutions from systems of algebraic equations, applied to find all cyclic 8-roots. In M. Gyllenberg and L. E. Persson, editors,Analysis, Algebra and Computers in Mathematical Research, pages 57–70. Lecture Notes in Mathematics, volume 564, Dekker, New York, 1994.
A. D. Bryuno and A. Soleev. Local uniformization of branches of a space curve, and Newton polyhedra.St. Petersburg Math. J., 3(1):53–82, 1992. Translated fromAlgebra i Analiz 3(1):67–101, 1991.
Yu. D. Burago and V. A. Zalgaller.Geometric Inequalities, Grundlehren der mathematischen Wisenschaften, volume 285. Springer-Verlag, Berlin, 1988.
J. F. Canny and I. Emiris. An efficient algorithm for the sparse mixed resultant.Proceedings of the 10th International Symposium on Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, pages 89–104. Springer-Verlag, New York, 1993.
J. Canny and J. M. Rojas. An optimal condition for determining the exact number of roots of a polynomial system.Proceedings of the 1991International Symposium on Symbolic and Algebraic Computation, pages 96–101. ACM, New York, 1991.
K. L. Clarkson, K. Melhorn, and R. Seidel. Four results on randomized incremental constructions. In A. Finkel and M. Jantzen, editors,Proceedings of the 9th Annual Symposium on Theoretical Aspects of Computer Science, Cachan, France, February 1992, pages 463–474. Lecture Notes in Computer Science, volume 577, Springer-Verlag, Berlin, 1992.
M. E. Dyer and A. M. Frieze. On the complexity of computing the volume of a polyhedron.SIAM J. Comput. 17(5):967–974, 1988.
M. Dyer, P. Gritzmann, and A. Hufnagel. On the complexity of computing mixed volumes.SIAM J. Comput., to appear.
H. Edelsbrunner.Algorithms in Combinatorial Geometry. ETACS Monographs on Theoretical Computer Science, volume 10, Springer-Verlag, Berlin, 1987.
H. Edelsbrunner and N. R. Shah. Incremental topological flipping works for regular triangulations.Proceedings of the Eighth Annual Symposium on Computational Geometry, pages 43–52. ACM, New York, 1992.
I. Z. Emiris. Sparse Elimination and Applications in Kinematics. Ph.D. thesis, Computer Science Division, Dept. of Electrical Engineering and Computer Science, University of California, Berkeley, CA, 1994.
I. Emiris and J. Canny. Efficient incremental algorithms for the sparse resultant and the mixed volume. Technical Report 839, Computer Science Division, University of California, Berkeley, CA, 1994. Also inJ. Symbolic Comput., 11(1):1–33, 1996.
M. A. Facello. Implementation of a randomized algorithm for Delaunay and regular triangulations in three dimensions.Comput. Aided Geom. Design., 12(4):349–370, 1995.
O. D. Faugeras and S. Maybank. Motion from point matches: multiplicity of solutions.Internat. J. Comput. Vision, 4:225–246, 1990.
M. R. Garey and D. S. Johnson.Computers and Intractability. A Guide to the Theory of NP-Completeness. Freemann, San Francisco, CA, 1979.
I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky. Generalized Euler integrals and A-hypergeometric functions.Adv. in Math., 84:255–271, 1990.
I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky,Discriminants, Resultants and Multidimensional Determinants, Birkhäuser, Boston, MA, 1994.
P. Gritzmann and V. Klee. Mathematical programming and convex geometry. In P. M. Gruber and J. M. Wills, editors,Handbook of Convex Geometry, volume A, chapter 2.7, pages 627–674. North-Holland, Amsterdam, 1993.
P. Gritzmann and V. Klee. On the complexity of some basic problems in computational convexity: II. Volume and mixed volumes. In R. Schneider, T. Bisztriczky, P. McMullen, and A. I. Weiss, editors,Polytopes: Abstract, Convex and Computational, pages 373–466, Kluwer, Boston, MA, 1994.
P. Gritzmann and B. Sturmfels. Minkowski addition of polytopes: computational complexity and applications to Gröbner bases.SIAM J. Discrete Math., 6(2):246–269, 1993.
C. Wampler and A. Morgan. Solving the 6R inverse position problem using a generic case solution methodology.Mech. Mach. Theory, 26(1):91–106, 1991.
C. W. Wampler, A. P. Morgan, and A. J. Sommese. Complete solution of the nine-point path synthesis problem for four-bar linkages.ASME J. Mech. Design, 114(1):153–159, 1992.
G. M. Ziegler.Lectures on Polytopes. Graduate Texts in Mathematics, volume 152. Springer-Verlag, New York, 1995.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Verschelde, J., Gatermann, K. & Cools, R. Mixed-volume computation by dynamic lifting applied to polynomial system solving. Discrete Comput Geom 16, 69–112 (1996). https://doi.org/10.1007/BF02711134
Received:
Revised:
Issue Date:
DOI: https://doi.org/10.1007/BF02711134