[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A New Variational Approach to Linearization of Traction Problems in Elasticity

  • Published:
Journal of Optimization Theory and Applications Aims and scope Submit manuscript

Abstract

In a recent paper, we deduced a new energy functional for pure traction problems in elasticity, as the variational limit of nonlinear elastic energy functional related to a material body subject to an equilibrated force field: a kind of Gamma limit with respect to the weak convergence of strains, when a suitable small parameter tends to zero. This functional exhibits a gap that makes it different from the classical linear elasticity functional. Nevertheless, a suitable compatibility condition on the force field ensures coincidence of related minima and minimizers. Here, we show some relevant properties of the new functional and prove stronger convergence of minimizing sequences for suitable choices of nonlinear elastic energies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Maddalena, F., Percivale, D., Tomarelli, F.: The gap between linear elasticity and variational limit of finite elasticity in pure traction problems. Arch. Ration. Mech. Anal. (to appear)

  2. Gurtin, M.E.: The linear theory of elasticity, in Handbuch der Physik, Vla/2. Springer, Berlin (1972)

    Google Scholar 

  3. Love, A.E.: A Treatise on the Mathematical Theory of Elasticity. Dover, Mineola (1944)

    MATH  Google Scholar 

  4. Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: Handbuch der Physik, 11113. Springer, Berlin (1965)

  5. Dal Maso, G., Negri, M., Percivale, D.: Linearized elasticity as \(\varGamma \)-limit of finite elasticity. Set Valued Anal. 10(2–3), 165–183 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Agostiniani, V., Dal Maso, G., DeSimone, A.: Linear elasticity obtained from finite elasticity by Gamma-convergence under weak coerciveness conditions. Ann. Inst. H. Poincaré Anal. Non Linéaire. 29(5), 715–735 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Alicandro, R., Dal Maso, G., Lazzaroni, G., Palombaro, M.: Derivation of a linearised elasticity model from singularly perturbed multiwell energy functionals. Arch. Ration. Mech. Anal. (2018). https://doi.org/10.1007/s00205-018-1240-6

    MathSciNet  MATH  Google Scholar 

  8. Anzellotti, G., Baldo, S., Percivale, D.: Dimension reduction in variational problems, asymptotic development in \(\varGamma \)-convergence and thin structures in elasticity. Asympt. Anal. 9, 61–100 (1994)

    MathSciNet  MATH  Google Scholar 

  9. Audoly, B., Pomeau, Y.: Elasticity and Geometry. Oxford University Press, Oxford (2010)

    MATH  Google Scholar 

  10. Baiocchi, C., Buttazzo, G., Gastaldi, F., Tomarelli, F.: General existence results for unilateral problems in continuum mechanics. Arch. Ration. Mech. Anal. 100, 149–189 (1988)

    Article  MATH  Google Scholar 

  11. Buttazzo, G., Dal Maso, G.: Singular perturbation problems in the calculus of variations. Ann. Scuola Normale Sup. Cl. Sci. 4 ser. 11(3):395–430 (1984)

  12. Buttazzo, G., Tomarelli, F.: Compatibility conditions for nonlinear Neumann problems. Adv. Math. 89, 127–143 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  13. Carriero, M., Leaci, A., Tomarelli, F.: Strong solution for an elastic–plastic plate. Calc. Var. Partial Diff. Equ. 2(2), 219–240 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lecumberry, M., Müller, S.: Stability of slender bodies under compression and validity of von Kármán theory. Arch. Ration. Mech. Anal. 193, 255–310 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Maddalena, F., Percivale, D., Tomarelli, F.: Adhesive flexible material structures. Discr. Contin. Dyn. Syst. B 17(2), 553–574 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Maddalena, F., Percivale, D., Tomarelli, F.: Local and nonlocal energies in adhesive interaction. IMA J. Appl. Math. 81(6), 1051–1075 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Maddalena, F., Percivale, D., Tomarelli, F.: Variational Problems for Föppl-von Kármán plates. SIAM J. Math. Anal. 50(1), 251–282 (2018). https://doi.org/10.1137/17M1115502

    Article  MathSciNet  MATH  Google Scholar 

  18. Percivale, D., Tomarelli, F.: Scaled Korn–Poincaré inequality in BD and a model of elastic plastic cantilever. Asymptot. Anal. 23(3–4), 291–311 (2000)

    MathSciNet  MATH  Google Scholar 

  19. Percivale, D., Tomarelli, F.: From SBD to SBH: the elastic-plastic plate. Interfac. Free Bound. 4(2), 137–165 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Percivale, D., Tomarelli, F.: A variational principle for plastic hinges in a beam. Math. Models Methods Appl. Sci. 19(12), 2263–2297 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Percivale, D., Tomarelli, F.: Smooth and broken minimizers of some free discontinuity problems. In: Colli, P., et al. (eds.) Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs, pp. 431–468. Springer INdAM Series, 22 (2017). https://doi.org/10.1007/978-3-319-64489-9_17

  22. Ciarlet, P.G.: Mathematical Elasticity, Volume I: Three-Dimensional Elasticity. Elsevier, Amsterdam (1988)

    MATH  Google Scholar 

  23. Dal Maso, G.: An Introduction to Gamma Convergence, Birkhäuser. PNLDE 8 (1993)

  24. De Giorgi, E., Franzoni, T.: Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58(6), 842–850 (1975)

    MathSciNet  MATH  Google Scholar 

  25. De Tommasi, D., Marzano, S.: Small strain and moderate rotation. J. Elast. 32, 37–50 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Tommasi, D.De: On the kinematics of deformations with small strain and moderate rotation. Math. Mech. Solids 9, 355–368 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Frieseke, G., James, R.D., Müller, S.: A theorem on geometric rigidity and the derivation of non linear plate theory from three dimensional elasticity. Commun. Pure Appl. Math. 55, 1461–1506 (2002)

    Article  MATH  Google Scholar 

  28. Frieseke, G., James, R.D., Müller, S.: A Hierarky of plate models from nonlinear elasticity by gamma-convergence. Arch. Ration. Mech. Anal. 180, 183–236 (2006)

    Article  MathSciNet  Google Scholar 

  29. Hall, B.: Lie groups, Lie algebras and representations: an elementary introduction. In: Axler, S., Ribet, K. (eds.) Graduate Text in Mathematics, vol. 222. Springer, Berlin (2015)

    Google Scholar 

  30. Podio-Guidugli, P.: On the validation of theories of thin elastic structures. Meccanica 49(6), 1343–1352 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research was partially supported by C.N.R. INDAM Project 2018: G.N.A.M.P.A.—Problemi asintotici ed evolutivi con applicazioni a metamateriali e reti.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franco Tomarelli.

Additional information

Dedicated to Alexander Ioffe on the occasion of his 80th Birthday.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maddalena, F., Percivale, D. & Tomarelli, F. A New Variational Approach to Linearization of Traction Problems in Elasticity. J Optim Theory Appl 182, 383–403 (2019). https://doi.org/10.1007/s10957-019-01533-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10957-019-01533-8

Keywords

Mathematics Subject Classification

Navigation