Abstract
In a recent paper, we deduced a new energy functional for pure traction problems in elasticity, as the variational limit of nonlinear elastic energy functional related to a material body subject to an equilibrated force field: a kind of Gamma limit with respect to the weak convergence of strains, when a suitable small parameter tends to zero. This functional exhibits a gap that makes it different from the classical linear elasticity functional. Nevertheless, a suitable compatibility condition on the force field ensures coincidence of related minima and minimizers. Here, we show some relevant properties of the new functional and prove stronger convergence of minimizing sequences for suitable choices of nonlinear elastic energies.
Similar content being viewed by others
References
Maddalena, F., Percivale, D., Tomarelli, F.: The gap between linear elasticity and variational limit of finite elasticity in pure traction problems. Arch. Ration. Mech. Anal. (to appear)
Gurtin, M.E.: The linear theory of elasticity, in Handbuch der Physik, Vla/2. Springer, Berlin (1972)
Love, A.E.: A Treatise on the Mathematical Theory of Elasticity. Dover, Mineola (1944)
Truesdell, C., Noll, W.: The non-linear field theories of mechanics. In: Handbuch der Physik, 11113. Springer, Berlin (1965)
Dal Maso, G., Negri, M., Percivale, D.: Linearized elasticity as \(\varGamma \)-limit of finite elasticity. Set Valued Anal. 10(2–3), 165–183 (2002)
Agostiniani, V., Dal Maso, G., DeSimone, A.: Linear elasticity obtained from finite elasticity by Gamma-convergence under weak coerciveness conditions. Ann. Inst. H. Poincaré Anal. Non Linéaire. 29(5), 715–735 (2012)
Alicandro, R., Dal Maso, G., Lazzaroni, G., Palombaro, M.: Derivation of a linearised elasticity model from singularly perturbed multiwell energy functionals. Arch. Ration. Mech. Anal. (2018). https://doi.org/10.1007/s00205-018-1240-6
Anzellotti, G., Baldo, S., Percivale, D.: Dimension reduction in variational problems, asymptotic development in \(\varGamma \)-convergence and thin structures in elasticity. Asympt. Anal. 9, 61–100 (1994)
Audoly, B., Pomeau, Y.: Elasticity and Geometry. Oxford University Press, Oxford (2010)
Baiocchi, C., Buttazzo, G., Gastaldi, F., Tomarelli, F.: General existence results for unilateral problems in continuum mechanics. Arch. Ration. Mech. Anal. 100, 149–189 (1988)
Buttazzo, G., Dal Maso, G.: Singular perturbation problems in the calculus of variations. Ann. Scuola Normale Sup. Cl. Sci. 4 ser. 11(3):395–430 (1984)
Buttazzo, G., Tomarelli, F.: Compatibility conditions for nonlinear Neumann problems. Adv. Math. 89, 127–143 (1991)
Carriero, M., Leaci, A., Tomarelli, F.: Strong solution for an elastic–plastic plate. Calc. Var. Partial Diff. Equ. 2(2), 219–240 (1994)
Lecumberry, M., Müller, S.: Stability of slender bodies under compression and validity of von Kármán theory. Arch. Ration. Mech. Anal. 193, 255–310 (2009)
Maddalena, F., Percivale, D., Tomarelli, F.: Adhesive flexible material structures. Discr. Contin. Dyn. Syst. B 17(2), 553–574 (2012)
Maddalena, F., Percivale, D., Tomarelli, F.: Local and nonlocal energies in adhesive interaction. IMA J. Appl. Math. 81(6), 1051–1075 (2016)
Maddalena, F., Percivale, D., Tomarelli, F.: Variational Problems for Föppl-von Kármán plates. SIAM J. Math. Anal. 50(1), 251–282 (2018). https://doi.org/10.1137/17M1115502
Percivale, D., Tomarelli, F.: Scaled Korn–Poincaré inequality in BD and a model of elastic plastic cantilever. Asymptot. Anal. 23(3–4), 291–311 (2000)
Percivale, D., Tomarelli, F.: From SBD to SBH: the elastic-plastic plate. Interfac. Free Bound. 4(2), 137–165 (2002)
Percivale, D., Tomarelli, F.: A variational principle for plastic hinges in a beam. Math. Models Methods Appl. Sci. 19(12), 2263–2297 (2009)
Percivale, D., Tomarelli, F.: Smooth and broken minimizers of some free discontinuity problems. In: Colli, P., et al. (eds.) Solvability, Regularity, and Optimal Control of Boundary Value Problems for PDEs, pp. 431–468. Springer INdAM Series, 22 (2017). https://doi.org/10.1007/978-3-319-64489-9_17
Ciarlet, P.G.: Mathematical Elasticity, Volume I: Three-Dimensional Elasticity. Elsevier, Amsterdam (1988)
Dal Maso, G.: An Introduction to Gamma Convergence, Birkhäuser. PNLDE 8 (1993)
De Giorgi, E., Franzoni, T.: Su un tipo di convergenza variazionale. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 58(6), 842–850 (1975)
De Tommasi, D., Marzano, S.: Small strain and moderate rotation. J. Elast. 32, 37–50 (1993)
Tommasi, D.De: On the kinematics of deformations with small strain and moderate rotation. Math. Mech. Solids 9, 355–368 (2004)
Frieseke, G., James, R.D., Müller, S.: A theorem on geometric rigidity and the derivation of non linear plate theory from three dimensional elasticity. Commun. Pure Appl. Math. 55, 1461–1506 (2002)
Frieseke, G., James, R.D., Müller, S.: A Hierarky of plate models from nonlinear elasticity by gamma-convergence. Arch. Ration. Mech. Anal. 180, 183–236 (2006)
Hall, B.: Lie groups, Lie algebras and representations: an elementary introduction. In: Axler, S., Ribet, K. (eds.) Graduate Text in Mathematics, vol. 222. Springer, Berlin (2015)
Podio-Guidugli, P.: On the validation of theories of thin elastic structures. Meccanica 49(6), 1343–1352 (2014)
Acknowledgements
The research was partially supported by C.N.R. INDAM Project 2018: G.N.A.M.P.A.—Problemi asintotici ed evolutivi con applicazioni a metamateriali e reti.
Author information
Authors and Affiliations
Corresponding author
Additional information
Dedicated to Alexander Ioffe on the occasion of his 80th Birthday.
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Maddalena, F., Percivale, D. & Tomarelli, F. A New Variational Approach to Linearization of Traction Problems in Elasticity. J Optim Theory Appl 182, 383–403 (2019). https://doi.org/10.1007/s10957-019-01533-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10957-019-01533-8
Keywords
- Calculus of variations
- Pure traction problems
- Linear elasticity
- Nonlinear elasticity
- Finite elasticity
- Critical points
- Gamma convergence
- Asymptotic analysis
- Nonlinear Neumann problems