[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Abstract

Given a regular bounded open setΩR 2,λ, μ>0 andg εL q (Ω) withq>2, we prove, under compatibility and safe load conditions ong, the existence of a minimizing pair for the functional

, over closed setsK ⊂ ℝ2 and functionsu ε C0(\(\overline \Omega \)) ∩ C2(Ω/K); here ¦[Du]¦ denotes the jump ofDu acrossK and ℋ1 is the 1-dimensional Hausdorff measure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L.: Compactness for a special case of functions of bounded variation. Boll. Un. Mat. Ital.3-B (7), 857–881 (1989)

    Google Scholar 

  2. Ambrosio, L.: Existence theory for a new class of variational problems. Arch. Rational Mech. Anal.111, 291–322 (1990)

    Google Scholar 

  3. Blake A., Zisserman, A.: Visual Reconstruction. Cambridge: The MIT Press, 1987

    Google Scholar 

  4. Brezis, H., Sibony, M.: Equivalence de deux inéquations variationnelles. Arch. Rat. Mech. Anal.41, 254–265 (1971)

    Google Scholar 

  5. Carriero, M., Leaci, A., Tomarelli, F.: Plastic free discontinuities and special bounded hessian. C. R. Acad. Sci. Paris314, 595–600 (1992)

    Google Scholar 

  6. Carriero, M., Leaci A., Tomarelli, F.: Special Bounded Hessian and elastic-plastic plate. Rend. Accad. Naz. delle Scienze (dei XL) (109)XV, 223–258 (1992)

    Google Scholar 

  7. Cesari L., Yang, W.H.: Serrin integrals and second order problems in plasticity. Proc. R. Soc. Edin.117A, 193–207 (1991)

    Google Scholar 

  8. Coscia, A.: Existence result for a new variational problem in one-dimensional segmentation theory. Ann. Univ. FerraraXXXVII, 185–203 (1991)

    Google Scholar 

  9. De Giorgi, E.: Free discontinuity problems in calculus of variations. Frontiers in Pure & Applied Mathematics, Dautray, R. (ed.) Amsterdam: North-Holland, 1991

    Google Scholar 

  10. De Giorgi E., Ambrosio, L.: Un nuovo tipo di funzionale del Calcolo delle Variazioni. Atti Accad. Naz. Lincei, Rend. Cl. Sci. Fis. Mat. Natur.82, 199–210 (1988)

    Google Scholar 

  11. De Giorgi, E., Carriero M., Leaci, A.: Existence theorem for a minimum problem with free discontinuity set. Arch. Rational Mech. Anal.108, 195–218 (1989)

    Google Scholar 

  12. Demengel, F.: Fonctions a Hessian Borné. Ann. Inst. Fourier34, 155–190 (1984)

    Google Scholar 

  13. Demengel, F.: Compactness theorem for spaces of functions with bounded derivatives and applications to limit analysis problems in plasticity. Arch. Rational Mech. Anal.105, 123–161 (1989)

    Google Scholar 

  14. Eisen, G.: A selection lemma for sequences of measurable sets and lower semicontinuity of multiple integrals. Manuscripta Math.27, 73–79 (1979)

    Google Scholar 

  15. Federer, H.: Geometric Measure Theory. Berlin: Springer, 1969

    Google Scholar 

  16. Fonseca, I.: Interfacial energy and the Maxwell rule. Arch. Rational Mech. Anal.106, 63–95 (1989)

    Google Scholar 

  17. Giaquinta, M.: Multiple integrals in the calculus of variations and nonlinear elliptic systems. Ann. Math. Stud. Princeton U. P., 1983

  18. Hardt, R., Kinderlehrer, D.: Elastic plastic deformation. Appl. Math. Optim.10, 203–246 (1983)

    Google Scholar 

  19. Hardt, R., Kinderlehrer, D.: Variational principles with linear growth. In: Partial Differential Equations and Calculus of Variations, Essays in Honor of Ennio De Giorgi. Boston: Birkhäuser, 1989

    Google Scholar 

  20. Leaci, A.: Free discontinuity problems with unbounded data: the two dimensional case. Manuscripta Math.75, 429–441 (1992)

    Google Scholar 

  21. Lions, J.L., Magenes, E.: Problèmes aux limites non homogènes et applications I. Paris: Paris 1968

  22. Mumford, D., Shah, J.: Optimal approximation by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math.XLII, 577–685 (1989)

    Google Scholar 

  23. Pallara, D.: Some new results on functions of bounded variation. Rend. Accad. Naz. delle Scienze (dei XL) (108)XIV, 295–321 (1990)

    Google Scholar 

  24. Seregin, G.A.: Some mathematical problems in the theory of the perfect elastic-plastic plate. Appl. Math. Optim. (to appear)

  25. Temam, R.: Problèmes Mathématiques en Plasticité. Paris: Dunod, 1983

    Google Scholar 

  26. Tomarelli, F.: Special Bounded Hessian and partial regularity of equilibrium for a plastic plate. In: Buttazzo, G., Galdi, G.P., Zanghirati, L. (eds) Developments in PDE and Applications to Mathematical Physics, pp. 235–240. New York: Plenum Press, 1992

    Google Scholar 

  27. Ziemer, W.P.: Weakly Differentiable Functions. New York: Springer, 1988

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Dedicated to Enrico Magenes for his 70th birthday

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carriero, M., Lead, A. & Tomarelli, F. Strong solution for an elastic-plastic plate. Calc. Var 2, 219–240 (1994). https://doi.org/10.1007/BF01191343

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01191343

Mathematics subject classification

Navigation