Summary
Turan[5] has shown, that for a quadrature formula with multiple nodes
there exist, form odd, “Gaussian” nodesb 1, ...,b s, so that the quadrature formula reaches order (m+1)s. In the present paper we show that these formulas can be extended to Implicit Runge-Kutta methods with multiple nodes (cf. [4]) also of order (m+1)s, in the same way, asButcher's processes [1] generalize Gaussian formulas (casem=1).
Zusammenfassung
Turan hat in [5] gezeigt, daß bei einer Quadraturformel mit mehrfachen Knoten
beiungeradem m die Stützstellenb 1, ...,b s so gewählt werden können, daß die Methode die Ordnung (m+1)s erreicht. Wir zeigen hier, daß diese Formeln auf implizite RK-Methoden mit mehrfachen Knoten erweitert werden können, welche ebenfalls die Ordnung (m+1)s besitzen. Im Fallem=1 sind dies die Methoden vonButcher [1] über Gaußschen Quadraturformeln.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Butcher, J. C.: Implicit Runge-Kutta processes. Math. Comp.18, 50–64 (1964).
Butcher, J. C.: Lectures on Runge-Kutta Methods. University of Innsbruck, June 1–5. 1970.
Hairer, E.: A general method for ordinary differential equations. (To appear.)
Kastlunger, K., andG. Wanner: Runge-Kutta Methods with Multiple Nodes. Computing9, 9–24 (1972).
Turán, P.: On the theory of the mechanical quadrature, Acta sci. math.12 A, 30–37 (1950).
Wanner, G.: Int. gew. Diffgln., B. I. Htb. 831/831 a, Mannheim. 1969.
Ehle, B.: On Padé Approximations to the Exponential Function and A-stable Methods for Num. Sol. of Initial Value Prob., Thesis. 1969.
Stroud, A. H., andD. D. Stancu: Quadrature formulas with multiple Gaussian nodes. J. SIAM Numer. Anal.B2, 129–143 (1965).
Development of new methods for ..., Final Technical Report, Prof.W. Groebner, University of Innsbruck. 1969.
Wanner, G.: Runge-Kutta Methods with Expansion in Even Powers ofh. (To appear.)
Author information
Authors and Affiliations
Additional information
With 9 Figures
Rights and permissions
About this article
Cite this article
Kastlunger, K., Wanner, G. On Turan type implicit Runge-Kutta methods. Computing 9, 317–325 (1972). https://doi.org/10.1007/BF02241605
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF02241605