[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On Turan type implicit Runge-Kutta methods

Runge-Kutta-Methoden über Turanschen Quadraturformeln

  • Published:
Computing Aims and scope Submit manuscript

Summary

Turan[5] has shown, that for a quadrature formula with multiple nodes

$$\int\limits_{x_0 }^{x_0 + h} {f(t)dt\dot = h\sum {c_i^{(1)} } f(x_0 + b_i h) + h^2 \sum {c_i^{(2)} f'(x_0 + b_i h) + ... + h^m \sum {c_i^{(m)} } ^{f(m - 1)} (x_0 + b_i h)} } $$

there exist, form odd, “Gaussian” nodesb 1, ...,b s, so that the quadrature formula reaches order (m+1)s. In the present paper we show that these formulas can be extended to Implicit Runge-Kutta methods with multiple nodes (cf. [4]) also of order (m+1)s, in the same way, asButcher's processes [1] generalize Gaussian formulas (casem=1).

Zusammenfassung

Turan hat in [5] gezeigt, daß bei einer Quadraturformel mit mehrfachen Knoten

$$\int\limits_{x_0 }^{x_0 + h} {f(t)dt\dot = h\sum {c_i^{(1)} } f(x_0 + b_i h) + h^2 \sum {c_i^{(2)} f'(x_0 + b_i h) + ... + h^m \sum {c_i^{(m)} } ^{f(m - 1)} (x_0 + b_i h)} } $$

beiungeradem m die Stützstellenb 1, ...,b s so gewählt werden können, daß die Methode die Ordnung (m+1)s erreicht. Wir zeigen hier, daß diese Formeln auf implizite RK-Methoden mit mehrfachen Knoten erweitert werden können, welche ebenfalls die Ordnung (m+1)s besitzen. Im Fallem=1 sind dies die Methoden vonButcher [1] über Gaußschen Quadraturformeln.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Butcher, J. C.: Implicit Runge-Kutta processes. Math. Comp.18, 50–64 (1964).

    Google Scholar 

  2. Butcher, J. C.: Lectures on Runge-Kutta Methods. University of Innsbruck, June 1–5. 1970.

  3. Hairer, E.: A general method for ordinary differential equations. (To appear.)

  4. Kastlunger, K., andG. Wanner: Runge-Kutta Methods with Multiple Nodes. Computing9, 9–24 (1972).

    Google Scholar 

  5. Turán, P.: On the theory of the mechanical quadrature, Acta sci. math.12 A, 30–37 (1950).

    Google Scholar 

  6. Wanner, G.: Int. gew. Diffgln., B. I. Htb. 831/831 a, Mannheim. 1969.

  7. Ehle, B.: On Padé Approximations to the Exponential Function and A-stable Methods for Num. Sol. of Initial Value Prob., Thesis. 1969.

  8. Stroud, A. H., andD. D. Stancu: Quadrature formulas with multiple Gaussian nodes. J. SIAM Numer. Anal.B2, 129–143 (1965).

    Google Scholar 

  9. Development of new methods for ..., Final Technical Report, Prof.W. Groebner, University of Innsbruck. 1969.

  10. Wanner, G.: Runge-Kutta Methods with Expansion in Even Powers ofh. (To appear.)

Download references

Author information

Authors and Affiliations

Authors

Additional information

With 9 Figures

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kastlunger, K., Wanner, G. On Turan type implicit Runge-Kutta methods. Computing 9, 317–325 (1972). https://doi.org/10.1007/BF02241605

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02241605

Keywords

Navigation