[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Implementing the simplex method as a cutting-plane method, with a view to regularization

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We show that the simplex method can be interpreted as a cutting-plane method, assuming that a special pricing rule is used. This approach is motivated by the recent success of the cutting-plane method in the solution of special stochastic programming problems.

We focus on the special linear programming problem of finding the largest ball that fits into a given polyhedron. In a computational study we demonstrate that ball-fitting problems have such special characteristics which indicate their utility in regularization schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bixby, R.E.: Solving real-world linear programs: a decade and more of progress. Oper. Res. 50, 3–15 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Borgwardt, K.H.: The Simplex Method: A Probabilistic Analysis. Algorithms and Combinatorics, vol. 1. Springer, New York (1980)

    Google Scholar 

  3. Cheney, E.W., Goldstein, A.A.: Newton’s method for convex programming and Tchebycheff approximation. Numer. Math. 1, 253–268 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dantzig, G.B.: Maximization of a linear function of variables subject to linear inequalities. In: Koopmans, T.C. (ed.) Activity Analysis of Production and Allocation, pp. 339–347. Wiley, New York (1951)

    Google Scholar 

  5. Dantzig, G.B.: Linear Programming and Extensions. Princeton University Press, Princeton (1963)

    MATH  Google Scholar 

  6. Dantzig, G.B., Van Slyke, R.M.: Generalized upper bounding techniques. J. Comput. Syst. Sci. 1, 213–226 (1967)

    Article  MATH  Google Scholar 

  7. Dempster, M.A.H., Merkovsky, R.R.: A practical geometrically convergent cutting plane algorithm. SIAM J. Numer. Anal. 32, 631–644 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  8. Elble, J.M.: Computational experience with linear optimization and related problems. PhD dissertation, advisor: N. Sahinidis. The University of Illinois at Urbana-Champaign, Illinois, USA

  9. Elzinga, J., Moore, T.G.: A central cutting plane algorithm for the convex programming problem. Math. Program. 8, 134–145 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fábián, C.I.: Bundle-type methods for inexact data. Cent. Eur. J. Oper. Res. 8, 35–55 (2000) (special issue, T. Csendes, T. Rapcsák (eds.))

    MATH  Google Scholar 

  11. Fábián, C.I.: Computational aspects of risk-averse optimisation in two-stage stochastic models. Optimization Online, August 2012

  12. Fábián, C.I., Eretnek, K., Papp, O.: Towards a regularised simplex method. In: Suhl, L., Mitra, G., Lucas, C., Koberstein, A., Beckmann, L. (eds.) Applied Mathematical Optimization and Modelling. Extended Abstracts of the APMOD 2012 Conference. DSOR Contributions to Information Sytems, vol. 8, pp. 3–9 (2012) (DS&OR Lab, University of Paderborn, Germany)

    Google Scholar 

  13. Fábián, C.I., Eretnek, K., Papp, O.: A regularised simplex method. Optimization Online, February 2012

  14. Fábián, C.I., Mitra, G., Roman, D.: Processing second-order stochastic dominance models using cutting-plane representations. Math. Program., Ser. A 130, 33–57 (2011)

    Article  MATH  Google Scholar 

  15. Fábián, C.I., Prékopa, A., Ruf-Fiedler, O.: On a dual method for a specially structured linear programming problem. Optim. Methods Softw. 17, 445–492 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fábián, C.I., Szőke, Z.: Solving two-stage stochastic programming problems with level decomposition. Comput. Manag. Sci. 4, 313–353 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Forrest, J.J., Goldfarb, D.: Steepest edge simplex algorithms for linear programming. Math. Program. 57, 341–374 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  18. Fourer, R.: Notes on the dual simplex method. Draft report (1994)

  19. Goffin, J.-L., Haurie, A., Vial, J.-P.: Decomposition and nondifferentiable optimization with the projective algorithm. Manag. Sci. 38, 284–302 (1992)

    Article  MATH  Google Scholar 

  20. Harris, P.M.J.: Pivot selection methods of the DEVEX LP code. Math. Program. 5, 1–28 (1973)

    Article  MATH  Google Scholar 

  21. Kall, P., Mayer, J.: Stochastic Linear Programming. Models, Theory, and Computation. International Series in Operations Research & Management Science. Springer, Berlin (2005)

    MATH  Google Scholar 

  22. Kelley, J.E.: The cutting-plane method for solving convex programs. J. Soc. Ind. Appl. Math. 8, 703–712 (1960)

    Article  MathSciNet  Google Scholar 

  23. Kiwiel, K.C.: Proximal level bundle methods for convex nondifferentiable optimization, saddle-point problems and variational inequalities. Math. Program. 69, 89–109 (1995)

    MathSciNet  MATH  Google Scholar 

  24. Klee, V., Minty, G.J.: How good is the simplex algorithm? In: Shisha, O. (ed.) Inequalities III, pp. 159–175. Academic Press, San Diego (1972)

    Google Scholar 

  25. Klein Haneveld, W.K., van der Vlerk, M.H.: Integrated chance constraints: reduced forms and an algorithm. Comput. Manag. Sci. 3, 245–269 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  26. Koberstein, A.: Progress in the dual simplex algorithm for solving large scale LP problems: techniques for a fast and stable implementation. Comput. Optim. Appl. 41, 185–204 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Koberstein, A., Suhl, U.H.: Progress in the dual simplex algorithm for solving large scale LP problems: practical dual phase 1 algorithms. Comput. Optim. Appl. 37, 49–65 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kuhn, H.W., Tucker, A.W. (eds.): Linear Inequalities and Related Systems. Princeton University Press, Princeton (1956)

    MATH  Google Scholar 

  29. Künzi-Bay, A., Mayer, J.: Computational aspects of minimizing conditional value-at-risk. Comput. Manag. Sci. 3, 3–27 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Lemaréchal, C., Nemirovskii, A., Nesterov, Yu.: New variants of bundle methods. Math. Program. 69, 111–147 (1995)

    Article  MATH  Google Scholar 

  31. Lemke, C.E.: The dual method of solving the linear programming problem. Nav. Res. Logist. Q. 1, 36–47 (1954)

    Article  MathSciNet  Google Scholar 

  32. Luedtke, J.: New formulations for optimization under stochastic dominance constraints. SIAM J. Control Optim. 19, 1433–1450 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  33. Maros, I.: A generalized dual phase-2 simplex algorithm. Eur. J. Oper. Res. 149, 1–16 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  34. Maros, I.: A piecewise linear dual phase-1 algorithm for the simplex method. Comput. Optim. Appl. 26, 63–81 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  35. Maros, I.: A general pricing scheme for the simplex method. Ann. Oper. Res. 124, 193–203 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  36. Maros, I.: Computational Techniques of the Simplex Method. International Series in Operations Research & Management Science. Kluwer Academic, Boston (2003)

    Book  MATH  Google Scholar 

  37. Oliveira, W., Sagastizábal, C.: Level bundle methods for oracles with on-demand accuracy. Optimization Online (2012)

  38. Oskoorouchi, M.R., Ghaffari, H.R., Terlaky, T., Aleman, D.M.: An interior point constraint generation algorithm for semi-infinite optimization with health-care application. Oper. Res. 59, 1184–1197 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  39. Ouorou, A.: A proximal cutting plane method using Chebychev center for nonsmooth convex optimization. Math. Program. 119, 239–271 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Padberg, M.: Linear Optimization and Extensions. Springer, Berlin (1995)

    MATH  Google Scholar 

  41. Pan, P.-Q.: Nested pricing for the simplex algorithm: an empirical evaluation. Optimization Online (2007)

  42. Pan, P.-Q.: Efficient nested pricing in the simplex algorithm. Oper. Res. Lett. 36, 309–313 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  43. Prékopa, A.: Linear Programming. Bolyai János Mathematical Society, Budapest (1968) (in Hungarian)

    Google Scholar 

  44. Prékopa, A.: A very short introduction to linear programming. RUTCOR Lecture Notes, 2-92 (1992)

  45. Prékopa, A.: Private communication (2011)

  46. Rudolf, G., Ruszczyński, A.: Optimization problems with second order stochastic dominance constraints: duality, compact formulations, and cut generation methods. SIAM J. Control Optim. 19, 1326–1343 (2008)

    Article  MATH  Google Scholar 

  47. Sonnevend, G.: New algorithms in convex programming based on a notion of ‘centre’ (for systems of analytic inequalities) and on rational expectations. In: Hoffmann, K.H., Hirriart-Urruty, J.-B., Lemaréchal, C., Zowe, J. (eds.) Trends in Mathematical Optimization: Proceedings of the 4th French-German Conference on Optimization. International Series of Numerical Mathematics, vol. 84, pp. 311–327. Birkhäuser, Basel (1988)

    Chapter  Google Scholar 

  48. Spielman, D.A., Teng, S.-H.: Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time. J. ACM 51, 385–463 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  49. Terlaky, T.: Private communication (2010)

  50. Terlaky, T., Zhang, S.: Pivot rules for linear programming: a survey on recent theoretical developments. Ann. Oper. Res. 46, 203–233 (1993)

    Article  MathSciNet  Google Scholar 

  51. Vanderbei, R.J.: Linear Programming. Foundations and Extensions. International Series in Operations Research & Management Science. Springer, Berlin (2001) (ibid. 2008)

    MATH  Google Scholar 

  52. Zverovich, V., Fábián, C.I., Ellison, E., Mitra, G.: A computational study of a solver system for processing two-stage stochastic LPs with enhanced Benders decomposition. Math. Program. Comput. 4, 211–238 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors wish to thank István Maros, Tamás Terlaky, Tamás Szántai, András Prékopa and the anonymous Referees for many constructive remarks and valuable comments that led to substantial improvement of the paper.

This research and publication have been supported by the European Union and Hungary and co-financed by the European Social Fund through the projects TÁMOP-4.2.2.C-11/1/KONV-2012-0004: National Research Center for the Development and Market Introduction of Advanced Information and Communication Technologies, and TÁMOP-4.2.2.C-11/1/KONV-2012-0012: “Smarter Transport”—IT for Co-operative Transport Systems. These sources of support are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Csaba I. Fábián.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fábián, C.I., Papp, O. & Eretnek, K. Implementing the simplex method as a cutting-plane method, with a view to regularization. Comput Optim Appl 56, 343–368 (2013). https://doi.org/10.1007/s10589-013-9562-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-013-9562-7

Keywords

Navigation