[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

On the cone eigenvalue complementarity problem for higher-order tensors

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper, we consider the tensor generalized eigenvalue complementarity problem (TGEiCP), which is an interesting generalization of matrix eigenvalue complementarity problem (EiCP). First, we give an affirmative result showing that TGEiCP is solvable and has at least one solution under some reasonable assumptions. Then, we introduce two optimization reformulations of TGEiCP, thereby beneficially establishing an upper bound on cone eigenvalues of tensors. Moreover, some new results concerning the bounds on the number of eigenvalues of TGEiCP further enrich the theory of TGEiCP. Last but not least, an implementable projection algorithm for solving TGEiCP is also developed for the problem under consideration. As an illustration of our theoretical results, preliminary computational results are reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Adly, S., Rammal, H.: A new method for solving Pareto eigenvalue complementarity problems. Comput. Optim. Appl. 55, 703–731 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Springer, Berlin (2009)

    Book  MATH  Google Scholar 

  3. Bloy, L., Verma, R.: On computing the underlying fiber directions from the diffusion orientation distribution function. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) Medical Image Computing and Computer-Assisted Intervention-MICCAI 2008, pp. 1–8. Springer, Berlin (2008)

    Chapter  Google Scholar 

  4. Chang, K.C., Pearson, K., Zhang, T.: Perron-Frobenius theorem for nonnegative tensors. Commun. Math. Sci 6, 507–520 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chang, K.C., Pearson, K., Zhang, T.: On eigenvalue problems of real symmetric tensors. J. Math. Anal. Appl. 350, 416–422 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chung, S.J.: NP-completeness of the linear complementarity problem. J. Optim. Theory Appl. 60(3), 393–399 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cox, D., Little, J., O’Shea, D.: Using Algebraic Geometry. Springer, New York (2005)

    MATH  Google Scholar 

  8. da Costa, A., Figueiredo, I., Júdice, J., Martins, J.: A complementarity eigenproblem in the stability analysis of finite dimensional elastic systems with frictional contact. In: Ferris, M., Pang, J.S., Mangasarian, O. (eds.) Complementarity: Applications, Algorithms and Extensions, pp. 67–83. Kluwer, New York (2001)

    Chapter  Google Scholar 

  9. da Costa, A., Seeger, A.: Cone-constrained eigenvalue problems: theory and algorithms. Comput. Optim. Appl. 45(1), 25–57 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  10. Facchinei, F., Pang, J.: Finite-Dimensional Variational Inequalities and Complementarity Problems. Springer, New York (2003)

    Google Scholar 

  11. Ferris, M., Pang, J.: Engineering and economic applications of complementarity problems. SIAM Rev. 39(4), 669–713 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  12. Golub, G.H., Van der Vorst, H.A.: Eigenvalue computation in the 20th century. J. Comput. Appl. Math. 123(1), 35–65 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Iusem, A., Seeger, A.: On convex cones with infinitely many critical angles. Optimization 56, 115–128 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Júdice, J.J., Raydan, M., Rosa, S.S., Santos, S.A.: On the solution of the symmetric eigenvalue complementarity problem by the spectral projected gradient algorithm. Numer. Algor. 47(4), 391–407 (2008)

    Article  MATH  Google Scholar 

  15. Júdice, J.J., Sherali, H.D., Ribeiro, I.M.: The eigenvalue complementarity problem. Comput. Optim. Appl. 37, 139–156 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  16. Judice, J.J., Sherali, H.D., Ribeiro, I.M., Rosa, S.S.: On the asymmetric eigenvalue complementarity problem. Optim. Method Softw. 24(4–5), 549–568 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lavilledieu, P., Seeger, A.: Existence de valeurs propres pour les systmes multivoques résultats anciens et nouveaux. Ann. Sci. Math. Que. 25, 47–70 (2001)

    MATH  MathSciNet  Google Scholar 

  18. Lim, L.H.: Singular values and eigenvalues of tensors: a variational approach. In: Proceedings of the IEEE International Workshop on Computational Advances in Multi-Sensor Addaptive Processing. CAMSAP05, pp. 129–132. IEEE Computer Society Press, Piscataway (2005)

  19. Ng, M., Qi, L., Zhou, G.: Finding the largest eigenvalue of a non-negative tensor. SIAM J. Matrix Anal. Appl. 31, 1090–1099 (2009)

    Article  MathSciNet  Google Scholar 

  20. Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40(6), 1302–1324 (2005)

    Article  MATH  Google Scholar 

  21. Qi, L.: Symmetric nonnegative tensors and copositive tensors. Linear Alg. Appl. 439(1), 228–238 (2013)

    Article  MATH  Google Scholar 

  22. Qi, L., Sun, W., Wang, Y.: Numerical multilinear algebra and its applications. Front. Math. China 2(4), 501–526 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  23. Qi, L., Wang, F., Wang, Y.: Z-eigenvalue methods for a global polynomial optimization problem. Math. Program. 118(2), 301–316 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Qi, L., Yu, G., Wu, E.X.: Higher order positive semidefinite diffusion tensor imaging. SIAM J. Imaging Sci. 3, 416–433 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  25. Queiroz, M., Judice, J., Humes Jr, C.: The symmetric eigenvalue complementarity problem. Math. Comput. 73, 1849–1863 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Rockafellar, R.: Convex processes and hamiltonian dynamical systems. Convex Analysis and Mathematical Economics. Lecture Notes in Econmics and Mathematical Systems, vol. 168, pp. 122–136. Springer, Berlin (1979)

  27. Seeger, A.: Eigenvalue analysis of equilibrium processes defined by linear complementarity conditions. Linear Alg. Appl. 292(1), 1–14 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  28. Song, Y., Qi, L.: Eigenvalue analysis of constrained minimization problem for homogeneous polynomial. arXiv preprint arXiv:1302.6085 (2013)

  29. Song, Y., Qi, L.: Necessary and sufficient conditions for copositive tensors. Linear Multilinear A. 63, 120–131 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  30. Stewart, D.: Dynamics with Inequalities: Impacts and Hard Constraints. SIAM, Philadelphia (2011)

    Book  Google Scholar 

  31. van der Vorst, H.A., Golub, G.H.: 150 years old and still alive: eigenproblems. In: The State of the Art in Numerical Analysis. Institute of Mathematics and its Applications, vol. 52, pp. 93–119. Oxford University Press, New York (1997)

  32. Yang, Y., Yang, Q.: Further results for Perron-Frobenius theorem for nonnegative tensors. SIAM J. Matrix Anal. Appl. 31, 2517–2530 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the two anonymous referees for their close readings and valuable recommendations, which help us improve the presentation of this paper significantly. The first two authors were supported by National Natural Science Foundation of China (NSFC) at Grant Nos. (11171083, 11301123) and the Zhejiang Provincial NSFC at Grant No. LZ14A010003. The third author was supported by the Hong Kong Research Grant Council (Grant Nos. PolyU 502510, 502111, 501212 and 501913).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjin He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ling, C., He, H. & Qi, L. On the cone eigenvalue complementarity problem for higher-order tensors. Comput Optim Appl 63, 143–168 (2016). https://doi.org/10.1007/s10589-015-9767-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-015-9767-z

Keywords

Mathematics Subject Classification

Navigation