Abstract
We prove that for locally bounded processes the absence of arbitrage opportunities of the first kind is equivalent to the existence of a dominating local martingale measure. This is related to and motivated by results from the theory of filtration enlargements.
Similar content being viewed by others
References
Acciaio, B., Fontana, C., Kardaras, C.: Arbitrage of the first kind and filtration enlargements in semimartingale financial models (2014). arXiv preprint arXiv:1401.7198
Aksamit, A., Choulli, T., Deng, J., Jeanblanc, M.: Arbitrages in a progressive enlargement setting (2013). arXiv preprint arXiv:1312.2433
Amendinger, J., Imkeller, P., Schweizer, M.: Additional logarithmic utility of an insider. Stoch. Process. Appl. 75, 263–286 (1998)
Amendinger, J.: Martingale representation theorems for initially enlarged filtrations. Stoch. Process. Appl. 89, 101–116 (2000)
Ankirchner, S.: Information and semimartingales. Ph.D. thesis, Humboldt-Universität zu Berlin (2005). Available online http://www.stochastik.uni-jena.de/stochastik_multimedia/Publikationen+Ankirchner/Diss(homepage).pdf
Ankirchner, S., Dereich, S., Imkeller, P.: The Shannon information of filtrations and the additional logarithmic utility of insiders. Ann. Probab. 34, 743–778 (2006)
Ankirchner, S., Dereich, S., Imkeller, P.: Enlargement of filtrations and continuous Girsanov-type embeddings. In: Donati-Martin, C., et al. (eds.) Séminaire de Probabilités XL. Lecture Notes in Math., vol. 1899, pp. 389–410. Springer, Berlin (2007)
Becherer, D.: The numeraire portfolio for unbounded semimartingales. Finance Stoch. 5, 327–341 (2001)
Brannath, W., Schachermayer, W.: A bipolar theorem for \(L^{0}_{+}(\varOmega, \mathcal{F},\mathbb{P})\). In: Azéma, J., et al. (eds.) Séminaire de Probabilités, XXXIII. Lecture Notes in Math., vol. 1709, pp. 349–354. Springer, Berlin (1999)
Carr, P., Fisher, T., Ruf, J.: On the hedging of options on exploding exchange rates. Finance Stoch. 18, 115–144 (2014)
Cvitanić, J., Schachermayer, W., Wang, H.: Utility maximization in incomplete markets with random endowment. Finance Stoch. 5, 259–272 (2001)
Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math. Ann. 300, 463–520 (1994)
Delbaen, F., Schachermayer, W.: Arbitrage possibilities in Bessel processes and their relations to local martingales. Probab. Theory Relat. Fields 102, 357–366 (1995)
Delbaen, F., Schachermayer, W.: The existence of absolutely continuous local martingale measures. Ann. Appl. Probab. 5, 926–945 (1995)
Dellacherie, C.: Ensembles aléatoires. I. In: Meyer, P.-A. (ed.) Séminaire de Probabilités, III, Univ. Strasbourg, 1967/68. Lecture Notes in Math., vol. 88, pp. 97–114. Springer, Berlin (1969)
Dellacherie, C., Meyer, P.-A.: Probabilities and Potential. B: Theory of Martingales. North-Holland Mathematics Studies, vol. 72. North-Holland, Amsterdam (1982)
Ethier, S.N., Kurtz, T.G.: Markov Processes: Characterization and Convergence. Wiley, New York (1986)
Föllmer, H.: The exit measure of a supermartingale. Probab. Theory Relat. Fields 21, 154–166 (1972)
Föllmer, H., Gundel, A.: Robust projections in the class of martingale measures. Ill. J. Math. 50, 439–472 (2006)
Föllmer, H., Imkeller, P.: Anticipation cancelled by a Girsanov transformation: a paradox on Wiener space. Ann. Inst. Henri Poincaré Probab. Stat. 29, 569–586 (1993)
Föllmer, H., Kramkov, D.: Optional decompositions under constraints. Probab. Theory Relat. Fields 109, 1–25 (1997)
Harrison, J.M., Kreps, D.M.: Martingales and arbitrage in multiperiod securities markets. J. Econ. Theory 20, 381–408 (1979)
Harrison, J.M., Pliska, S.R.: Martingales and stochastic integrals in the theory of continuous trading. Stoch. Process. Appl. 11, 215–260 (1981)
Imkeller, P., Pontier, M., Weisz, F.: Free lunch and arbitrage possibilities in a financial market model with an insider. Stoch. Process. Appl. 92, 103–130 (2001)
Jacod, J.: Calcul Stochastique et Problèmes de Martingales. Lecture Notes in Mathematics, vol. 714. Springer, Berlin (1979)
Jacod, J.: Grossissement initial, hypothèse (H ′) et théorème de Girsanov. In: Jeulin, Th., Yor, M. (eds.) Grossissements de Filtrations: Exemples et Applications. Lecture Notes in Mathematics, vol. 1118, pp. 15–35. Springer, Berlin (1985)
Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Springer, Berlin (2003)
Jarrow, R.A., Protter, P., Shimbo, K.: Asset price bubbles in incomplete markets. Math. Finance 20, 145–185 (2010)
Karatzas, I., Kardaras, C.: The numéraire portfolio in semimartingale financial models. Finance Stoch. 11, 447–493 (2007)
Karatzas, I., Lehoczky, J.P., Shreve, S.E., Xu, G.-L.: Martingale and duality methods for utility maximization in an incomplete market. SIAM J. Control Optim. 29, 702–730 (1991)
Karatzas, I., Žitković, G.: Optimal consumption from investment and random endowment in incomplete semimartingale markets. Ann. Probab. 31, 1821–1858 (2003)
Kardaras, C.: Finitely additive probabilities and the fundamental theorem of asset pricing. In: Chiarella, C., Novikov, A. (eds.) Contemporary Quantitative Finance. Essays in Honour of Eckhard Platen, pp. 19–34. Springer, Berlin (2010)
Kardaras, C.: Market viability via absence of arbitrage of the first kind. Finance Stoch. 16, 651–667 (2012)
Kardaras, C., Kreher, D., Nikeghbali, A.: Strict local martingales and bubbles. Ann. Appl. Probab. (2015, to appear). arXiv preprint arXiv:1108.4177. doi:10.1214/14-AAP1037
Kardaras, C., Platen, E.: On the semimartingale property of discounted asset-price processes. Stoch. Process. Appl. 121, 2678–2691 (2011)
Kramkov, D., Schachermayer, W.: The asymptotic elasticity of utility functions and optimal investment in incomplete markets. Ann. Appl. Probab. 9, 904–950 (1999)
Kunita, H.: Absolute continuity of Markov processes. In: Meyer, P.-A. (ed.) Séminaire de Probabilités X. Lecture Notes in Mathematics, vol. 511, pp. 44–77. Springer, Berlin (1976)
Larsen, K., Žitković, G.: Stability of utility-maximization in incomplete markets. Stoch. Process. Appl. 117, 1642–1662 (2007)
Loewenstein, M., Willard, G.A.: Local martingales, arbitrage, and viability—free snacks and cheap thrills. Econom. Theory 161, 135–161 (2000)
Pal, S., Protter, P.: Analysis of continuous strict local martingales via h-transforms. Stoch. Process. Appl. 120, 1424–1443 (2010)
Parthasarathy, K.R.: Probability Measures on Metric Spaces. Probability and Mathematical Statistics, vol. 3. Academic Press, New York (1967)
Perkowski, N.: Studies of robustness in stochastic analysis and mathematical finance. Ph.D. thesis, Humboldt-Universität zu Berlin (2014). Available online http://edoc.hu-berlin.de/dissertationen/perkowski-nicolas-simon-2013-12-13/PDF/perkowski.pdf
Perkowski, N., Ruf, J.: Supermartingales as Radon–Nikodým densities and related measure extensions. Ann. Probab. (2015, to appear). arXiv preprint arXiv:1309.4623
Protter, P.E.: Stochastic Integration and Differential Equations, 2nd edn. Springer, Berlin (2004)
Rokhlin, D.B.: On the existence of an equivalent supermartingale density for a fork-convex family of random processes. Math. Notes 87, 556–563 (2010)
Ross, S.A.: A simple approach to the valuation of risky streams. J. Bus. 51, 453–475 (1978)
Ruf, J.: Hedging under arbitrage. Math. Finance 23, 297–317 (2013)
Schweizer, M.: On the minimal martingale measure and the Föllmer–Schweizer decomposition. Stoch. Anal. Appl. 13, 573–599 (1995)
Song, S.: An alternative proof of a result of Takaoka (2013). arXiv preprint arXiv:1306.1062
Takaoka, K., Schweizer, M.: On the condition of no unbounded profit with bounded risk. Finance Stoch. 18, 393–405 (2014)
von Weizsäcker, H., Winkler, G.: Stochastic Integrals: An Introduction. Vieweg, Wiesbaden (1990)
Yan, J.-A.: Caractérisation d’une classe d’ensembles convexes de \(L^{1}\) ou \(H^{1}\). In: Azéma, J., Yor, M. (eds.) Séminaire de Probabilités XIV. Lecture Notes in Mathematics, vol. 784, pp. 220–222. Springer, Berlin (1980)
Chantha, Y.: Théorème de Girsanov généralisé et grossissement d’une filtration. In: Jeulin, Th., Yor, M. (eds.) Grossissements de Filtrations: Exemples et Applications. Lecture Notes in Mathematics, vol. 1118, pp. 172–196. Springer, Berlin (1985)
Yor, M., Meyer, P.-A.: Sur l’extension d’un théorème de Doob à un noyau \(\sigma\)-fini d’après G. Mokobodzki. In: Dellacherie, C., et al. (eds.) Séminaire de Probabilités, XII, Univ. Strasbourg, 1976/1977. Lecture Notes in Math., vol. 649, pp. 482–488. Springer, Berlin (1978)
Žitković, G.: A filtered version of the bipolar theorem of Brannath and Schachermayer. J. Theor. Probab. 15, 41–61 (2002)
Žitković, G.: Convex compactness and its applications. Math. Financ. Econ. 3, 1–12 (2010)
Acknowledgements
We wish to express our gratitude to the anonymous referees for their careful reading of the manuscript and for their detailed comments which helped to correct a mistake in Sect. 5 and to improve the presentation. N.P. thanks Asgar Jamneshan for the introduction to filtration enlargements. We are grateful to Stefan Ankirchner, Kostas Kardaras and Johannes Ruf for their helpful comments on earlier versions of this paper. We thank Alexander Gushchin for pointing out the reference [45]. Part of the research was carried out during a 2011 visit at the University of Illinois at Urbana-Champaign. We are grateful for the hospitality at UIUC.
Author information
Authors and Affiliations
Corresponding author
Additional information
N.P. was supported by a Ph.D. scholarship of the Berlin Mathematical School, by the Fondation Sciences Mathématiques de Paris (FSMP), and by a public grant overseen by the French National Research Agency (ANR) as part of the “Investissements d’Avenir” program (reference: ANR-10-LABX-0098). N.P. acknowledges generous support from Université Paris Dauphine, where a part of this work was completed.
Appendix: Incomplete filtrations
Appendix: Incomplete filtrations
Here we collect some classical observations which allow transferring to our setting results of other authors that were obtained under complete filtrations. There are at least three important monographs which avoid the use of complete filtrations as far as possible, namely Jacod [25], Jacod and Shiryaev [27] and von Weizsäcker and Winkler [51]. Here we follow [27].
Let \((\varOmega, \mathcal {F}, (\mathcal {F}_{t})_{t \ge0}, P)\) be a filtered probability space equipped with a right-continuous filtration \((\mathcal {F}_{t})\). Write \(\mathcal {F}^{P}\) for the \(P\)-completion of ℱ and \(\mathcal{N}^{P}\) for the \(P\)-nullsets of \(\mathcal {F}^{P}\). Then \(\mathcal {F}_{t}^{P} = \mathcal {F}_{t} \vee\mathcal{N}^{P}\), \(t\ge0\), satisfies the usual conditions. It is well known and easy to show that for every random variable \(X\) on \((\varOmega, \mathcal {F}^{P})\), there exists a random variable \(Y\) on \((\varOmega, \mathcal {F})\) with \(P[X=Y]=1\).
Recall that the optional \(\sigma\)-algebra over \((\mathcal {F}_{t})\) is the \(\sigma \)-algebra on \(\varOmega\times[0,\infty)\) that is generated by all processes of the form \(X_{t}(\omega) = 1_{A}(\omega) 1_{[r,s)}(t)\) for some \(0\le r < s < \infty\) and \(A \in \mathcal {F}_{r}\), and the predictable \(\sigma\)-algebra is generated by all processes of the form \(X_{t}(\omega) = 1_{A}(\omega) 1_{\{0\}}(t) + 1_{B}(\omega) 1_{(r,s]}(t)\) for some \(0\le r < s < \infty\), \(A \in \mathcal {F}_{0}\) and \(B \in \mathcal {F}_{r}\). Similarly, we define the predictable and optional \(\sigma\)-algebras over \((\mathcal {F}^{P}_{t})\).
The first result relates stopping times under \((\mathcal {F}_{t})\) and under \((\mathcal {F}^{P}_{t})\).
Lemma A.1
(Lemma I.1.19 of [27])
Any stopping time on the completion \((\varOmega, (\mathcal {F}^{P}_{t}))\) is almost surely equal to a stopping time on \((\varOmega, (\mathcal {F}_{t}))\).
We also have a comparable result at the level of processes.
Lemma A.2
Any predictable (optional) process on the completion \((\varOmega, (\mathcal {F}^{P}_{t}))\) is indistinguishable from a predictable (optional) process on \((\varOmega, (\mathcal {F}_{t}))\).
Proof
The predictable case is Lemma I.2.17 of [27]. The proof of the optional case works exactly in the same way: the claim is trivial for the generating processes described above, and we can use the monotone class theorem to pass to indicator functions of general optional sets. Then we use monotone convergence to pass to general optional processes. □
This allows us to deduce a similar result for càdlàg processes.
Lemma A.3
Let \(S\) be an \((\mathcal {F}^{P}_{t})\)-adapted process that is almost surely càdlàg. Then \(S\) is indistinguishable from an \((\mathcal {F}_{t})\)-adapted process (which is then, of course, almost surely càdlàg as well).
Proof
Since \((\mathcal {F}^{P}_{t})\) is complete, \(S\) admits an indistinguishable version \(\widetilde{S}\) which is \((\mathcal {F}_{t}^{P})\)-adapted and càdlàg for every \(\omega\in\varOmega\). This \(\widetilde {S}\) is optional; so now the result follows from Lemma A.2. □
Rights and permissions
About this article
Cite this article
Imkeller, P., Perkowski, N. The existence of dominating local martingale measures. Finance Stoch 19, 685–717 (2015). https://doi.org/10.1007/s00780-015-0264-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00780-015-0264-0
Keywords
- Dominating local martingale measure
- Arbitrage of the first kind
- Fundamental theorem of asset pricing
- Supermartingale densities
- Föllmer’s measure
- Enlargement of filtration
- Jacod’s criterion