Abstract
We study the existence of the numéraire portfolio under predictable convex constraints in a general semimartingale model of a financial market. The numéraire portfolio generates a wealth process, with respect to which the relative wealth processes of all other portfolios are supermartingales. Necessary and sufficient conditions for the existence of the numéraire portfolio are obtained in terms of the triplet of predictable characteristics of the asset price process. This characterization is then used to obtain further necessary and sufficient conditions, in terms of a no-free-lunch-type notion. In particular, the full strength of the “No Free Lunch with Vanishing Risk” (NFLVR) condition is not needed, only the weaker “No Unbounded Profit with Bounded Risk” (NUPBR) condition that involves the boundedness in probability of the terminal values of wealth processes. We show that this notion is the minimal a-priori assumption required in order to proceed with utility optimization. The fact that it is expressed entirely in terms of predictable characteristics makes it easy to check, something that the stronger NFLVR condition lacks.
Similar content being viewed by others
References
Algoet, P., Cover, T.M.: Asymptotic optimality and asymptotic equipartition property of log-optimal investment. Ann. Probab. 16, 876–898 (1988)
Aliprantis, C.D., Border, K.C.: Infinite-Dimensional Analysis: A Hitchhiker’s Guide, 2nd edn. Springer, Berlin (1999)
Ansel, J.-P., Stricker, C.: Couverture des actifs contingents et prix maximum. Ann. Inst. H. Poincaré 30, 303–315 (1994)
Becherer, D.: The numéraire portfolio for unbounded semimartingales. Finance Stoch. 5, 327–341 (2001)
Bichteler, K.: Stochastic Integration with Jumps. Cambridge University Press, Cambridge (2002)
Cherny, A.S., Shiryaev, A.N.: Vector stochastic integrals and the fundamental theorems of asset pricing. Proc. Steklov Math. Inst. 237, 12–56 (2002)
Cherny, A.S., Shiryaev, A.N.: On stochastic integrals up to infinity and predictable criteria for integrability. In: Séminaire de Probabilités XXXVIII. Lecture Notes in Mathematics, vol. 1857, pp. 165–185. Springer, New York (2004)
Christensen, M.M., Larsen, K.: No arbitrage and the growth optimal portfolio. Stoch. Anal. Appl. 25, 255–280 (2007)
Dellacherie, C., Meyer, P.-A.: Probabilities and Potential B: Theory of Martingales. Elsevier, Amsterdam (1983)
Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math. Ann. 300, 463–520 (1994)
Delbaen, F., Schachermayer, W.: The existence of absolutely continuous local martingale measures. Ann. Appl. Probab. 5, 926–945 (1995)
Delbaen, F., Schachermayer, W.: The no-arbitrage property under a change of numéraire. Stoch. Stoch. Rep. 53, 213–226 (1995)
Delbaen, F., Schachermayer, W.: Arbitrage possibilities in Bessel processes and their relations to local martingales. Probab. Theory Relat. Fields 102, 357–366 (1995)
Delbaen, F., Schachermayer, W.: The fundamental theorem of asset pricing for unbounded stochastic processes. Math. Ann. 312, 215–260 (1998)
Fernholz, R., Karatzas, I.: Relative arbitrage in volatility-stabilized markets. Ann. Finance 1, 149–177 (2005)
Fernholz, R., Karatzas, I., Kardaras, C.: Diversity and relative arbitrage in equity markets. Finance Stoch. 9, 1–27 (2005)
Föllmer, H., Kramkov, D.: Optional decompositions under constraints. Probab. Theory Relat. Fields 109, 1–25 (1997)
Goll, T., Kallsen, J.: A complete explicit solution to the log-optimal portfolio problem. Ann. Appl. Probab. 13, 774–799 (2003)
Goll, T., Rüschendorf, L.: Minimax and minimal distance martingale measures and their relationship to portfolio optimization. Finance Stoch. 5, 557–581 (2001)
Jacod, J.: Calcul Stochastique et Problèmes de Martingales, Lecture Notes in Mathematics, vol. 714. Springer, Berlin (1979)
Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochastic Processes, 2nd edn. Springer, Berlin (2003)
Kabanov, Y.M.: On the FTAP of Kreps–Delbaen–Schachermayer. In: Kabanov, Y.M., Rozovskii, B.L., Shiryaev, A.N. (eds.) Statistics and Control of Random Processes. The Liptser Festschrift. Proceedings of Steklov Mathematical Institute Seminar, pp. 191–203. World Scientific, Singapore (1997)
Kallsen, J.: σ-Localization and σ-martingales. Theory Probab. Appl. 48, 152–163 (2004)
Karatzas, I., Kou, S.G.: On the pricing of contingent claims under constraints. Ann. Appl. Probab. 6, 321–369 (1996)
Karatzas, I., Lehoczky, J.P., Shreve, S.E.: Equilibrium models with singular asset prices. Math. Finance 1(3), 11–29 (1991)
Karatzas, I., Lehoczky, J.P., Shreve, S.E., Xu, G.-L.: Martingale and duality methods for utility maximization in an incomplete market. SIAM J. Control Optim. 29, 707–730 (1991)
Karatzas, I., Shreve, S.E.: Methods of Mathematical Finance. Springer, Berlin (1998)
Kardaras, C.: The numéraire portfolio and arbitrage in semimartingale models of financial markets. Ph.D. dissertation, Columbia University (2006) http://people.bu.edu/kardaras/kardaras_thesis.pdf
Kardaras, C.: No-free-lunch equivalences for exponential Lévy models under convex constraints on investment. Preprint (electronic access): http://people.bu.edu/kardaras/nfl_levy.pdf; Math. Finance (2006, to appear)
Kramkov, D., Schachermayer, W.: The asymptotic elasticity of utility functions and optimal investment in incomplete markets. Ann. Appl. Probab. 9, 904–950 (1999)
Kramkov, D., Schachermayer, W.: Necessary and sufficient conditions in the problem of optimal investment in incomplete markets. Ann. Appl. Probab. 13, 1504–1516 (2003)
Levental, S., Skorohod, A.V.: A necessary and sufficient condition for absence of arbitrage with tame portfolios. Ann. Appl. Probab. 5, 906–925 (1995)
Long, J.B. Jr.: The numéraire portfolio. J. Financ. Econ. 26, 29–69 (1990)
Mémin, J.: Espaces de semimartingales et changement de probabilité. Z. Wahrsch. Verwandte Geb. 52, 9–39 (1980)
Platen, E.: A benchmark approach to finance. Math. Finance 16, 131–151 (2006)
Schweizer, M.: Martingale densities for general asset prices. J. Math. Econ. 21, 363–378 (1992)
Schweizer, M.: A minimality property of the minimal martingale measure. Stat. Probab. Lett. 42, 27–31 (1999)
Stricker, C., Yan, J.-A.: Some remarks on the optional decomposition theorem. In: Séminaire de Probabilités XXXII. Lecture Notes in Mathematics, vol. 1686, pp. 56–66. Springer, New York (1998)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Karatzas, I., Kardaras, C. The numéraire portfolio in semimartingale financial models. Finance Stoch 11, 447–493 (2007). https://doi.org/10.1007/s00780-007-0047-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00780-007-0047-3
Keywords
- Numéraire portfolio
- Semimartingale
- Predictable characteristics
- Free lunch
- Supermartingale deflator
- Log-utility