[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Forecasting wholesale prices of yellow corn through the Gaussian process regression

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

For market players and policy officials, commodity price forecasts are crucial problems that are challenging to address due to the complexity of price time series. Given its strategic importance, corn crops are hardly an exception. The current paper evaluates the forecasting issue for China’s weekly wholesale price index for yellow corn from January 1, 2010 to January 10, 2020. We develop a Gaussian process regression model using cross validation and Bayesian optimizations over various kernels and basis functions that could effectively handle this sophisticated commodity price forecast problem. The model provides precise out-of-sample forecasts from January 4, 2019 to January 10, 2020, with a relative root mean square error, root mean square error, and mean absolute error of 1.245%, 1.605, and 0.936, respectively. The models developed here might be used by market players for market evaluations and decision-making as well as by policymakers for policy creation and execution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data availability

Available upon reasonable request.

Notes

  1. See https://fas.usda.gov/data/commodities/corn.

References

  1. Wang J, Wang Z, Li X, Zhou H (2022) Artificial bee colony-based combination approach to forecasting agricultural commodity prices. Int J Forecast 38:21–34. https://doi.org/10.1016/j.ijforecast.2019.08.006

    Article  Google Scholar 

  2. Xu X (2017) Short-run price forecast performance of individual and composite models for 496 corn cash markets. J Appl Stat 44:2593–2620. https://doi.org/10.1080/02664763.2016.1259399

    Article  MathSciNet  Google Scholar 

  3. Ouyang S, Hu J, Yang M, Yao M, Lin J (2022) Temporal and regional differences and empirical analysis on sensitive factors of the corn production cost in China. Appl Sci 12:1202. https://doi.org/10.3390/app12031202

    Article  Google Scholar 

  4. Xu X (2018) Using local information to improve short-run corn price forecasts. J Agric Food Ind Organ 16:20170018. https://doi.org/10.1515/jafio-2017-0018

    Article  Google Scholar 

  5. Xu X, Zhang Y (2023) Steel price index forecasting through neural networks: the composite index, long products, flat products, and rolled products. Min Econ 36:563–582. https://doi.org/10.1007/s13563-022-00357-9

    Article  Google Scholar 

  6. Liu X, Wang Y (2022) Influence of oil price on corn price based on multiple linear regression model. In: Innovative computing. Springer, pp 909–916. https://doi.org/10.1007/978-981-16-4258-6_111

  7. Wu Z, Weersink A, Maynard A (2022) Fuel-feed-livestock price linkages under structural changes. Appl Econ 54:206–223. https://doi.org/10.1080/00036846.2021.1965082

    Article  Google Scholar 

  8. Alola AA (2022) The nexus of renewable energy equity and agricultural commodities in the united states: evidence of regime-switching and price bubbles. Energy 239:122377. https://doi.org/10.1016/j.energy.2021.122377

    Article  Google Scholar 

  9. Forhad MAR, Alam MR (2022) Impact of oil demand and supply shocks on food-grain prices: a Markov-switching approach. Appl Econ. https://doi.org/10.1080/00036846.2021.2009113

    Article  Google Scholar 

  10. Abuselidze G, Alekseieva K, Kovtun O, Kostiuk O, Karpenko L (2022) Application of hedge technologies to minimize price risks by agricultural producers. In: XIV international scientific conference “INTERAGROMASH 2021”. Springer, pp 906–915. https://doi.org/10.1007/978-3-030-81619-3_101

  11. Xu X, Zhang Y (2022) Network analysis of price comovements among corn futures and cash prices. J Agric Food Ind Organ. https://doi.org/10.1515/jafio-2022-0009

    Article  Google Scholar 

  12. Wang S, Zhang M, Wang Y, Meng H (2022) Construction of grain price determinants analysis model based on structural vector autoregressive model. Sci Program. https://doi.org/10.1155/2022/5694780

    Article  Google Scholar 

  13. Xu Y, Li J, Wang L, Li C (2022) Liquidity of china’s agricultural futures market: measurement and cross-market dependence. China Agric Econ Rev. https://doi.org/10.1108/CAER-05-2021-0099

    Article  Google Scholar 

  14. Penone C, Giampietri E, Trestini S (2022) Futures–spot price transmission in EU corn markets. Agribusiness. https://doi.org/10.1002/agr.21735

    Article  Google Scholar 

  15. Yu W, Yue Y, Wang F (2022) The spatial-temporal coupling pattern of grain yield and fertilization in the north China plain. Agric Syst 196:103330. https://doi.org/10.1016/j.agsy.2021.103330

    Article  Google Scholar 

  16. Niu Y, Xie G, Xiao Y, Liu J, Zou H, Qin K, Wang Y, Huang M (2022) The story of grain self-sufficiency: China’s food security and food for thought. Food Energy Secur 11:e344. https://doi.org/10.1002/fes3.344

    Article  Google Scholar 

  17. Lu S, Cheng G, Li T, Xue L, Liu X, Huang J, Liu G (2022) Quantifying supply chain food loss in china with primary data: A large-scale, field-survey based analysis for staple food, vegetables, and fruits. Resour Conserv Recycl 177:106006. https://doi.org/10.1016/j.resconrec.2021.106006

    Article  Google Scholar 

  18. Li C, Bremer P, Harder MK, Lee MS, Parker K, Gaugler EC, Mirosa M (2022) A systematic review of food loss and waste in china: quantity, impacts and mediators. J Environ Manage 303:114092. https://doi.org/10.1016/j.jenvman.2021.114092

    Article  Google Scholar 

  19. Marfatia HA, Ji Q, Luo J (2022) Forecasting the volatility of agricultural commodity futures: the role of co-volatility and oil volatility. J Forecast 41:383–404. https://doi.org/10.1002/for.2811

    Article  MathSciNet  Google Scholar 

  20. Xu X (2017) Contemporaneous causal orderings of us corn cash prices through directed acyclic graphs. Empir Econ 52:731–758. https://doi.org/10.1007/s00181-016-1094-4

    Article  Google Scholar 

  21. Yang Z, Du X, Lu L, Tejeda H (2022) Price and volatility transmissions among natural gas, fertilizer, and corn markets: A revisit. J Risk Financ Manag 15:91. https://doi.org/10.3390/jrfm15020091

    Article  Google Scholar 

  22. Xu X (2020) Corn cash price forecasting. Am J Agric Econ 102:1297–1320. https://doi.org/10.1002/ajae.12041

    Article  Google Scholar 

  23. Yang J, Ge Y-E, Li KX (2022) Measuring volatility spillover effects in dry bulk shipping market. Transp Policy. https://doi.org/10.1016/j.tranpol.2022.01.018

    Article  Google Scholar 

  24. Ricome A, Reynaud A (2022) Marketing contract choices in agriculture: the role of price expectation and price risk management. Agric Econ 53:170–186. https://doi.org/10.1111/agec.12675

    Article  Google Scholar 

  25. Xu X, Thurman WN (2015) Using local information to improve short-run corn cash price forecasts. https://doi.org/10.22004/ag.econ.285845

  26. Warren-Vega WM, Aguilar-Hernández DE, Zárate-Guzmán AI, Campos-Rodríguez A, Romero-Cano LA (2022) Development of a predictive model for agave prices employing environmental, economic, and social factors: towards a planned supply chain for agave-tequila industry. Foods 11:1138. https://doi.org/10.3390/foods11081138

    Article  Google Scholar 

  27. Xu X (2014) Price discovery in us corn cash and futures markets: the role of cash market selection. https://doi.org/10.22004/ag.econ.169809

  28. Wang X, Gao S, Guo Y, Zhou S, Duan Y, Wu D (2022) A combined prediction model for hog futures prices based on Woa-Lightgbm-Cemdan. Complexity 2022. https://doi.org/10.1155/2022/3216036

  29. Ma Y, Zhang L, Song S, Yu S (2022) Impacts of energy price on agricultural production, energy consumption, and carbon emission in china: a price endogenous partial equilibrium model analysis. Sustainability 14:3002. https://doi.org/10.3390/su14053002

    Article  Google Scholar 

  30. Xu X (2019) Contemporaneous and granger causality among us corn cash and futures prices. Eur Rev Agric Econ 46:663–695. https://doi.org/10.1093/erae/jby036

    Article  Google Scholar 

  31. Liu B, Fang H, Zhang F, Zhong Z, Chen Y (2022) Spatiotemporal affordability evaluation of water services in china: a functional cost-price model. Adv Sustain Syst 6:2100284. https://doi.org/10.1002/adsu.202100284

    Article  Google Scholar 

  32. Xu X (2019) Price dynamics in corn cash and futures markets: cointegration, causality, and forecasting through a rolling window approach. Financ Mark Portf Manag 33:155–181. https://doi.org/10.1007/s11408-019-00330-7

    Article  Google Scholar 

  33. Kling JL, Bessler DA (1985) A comparison of multivariate forecasting procedures for economic time series. Int J Forecast 1:5–24. https://doi.org/10.1016/S0169-2070(85)80067-4

    Article  Google Scholar 

  34. Xu X, Zhang Y (2023) Contemporaneous causality among office property prices of major Chinese cities with vector error correction modeling and directed acyclic graphs. J Model Manag. https://doi.org/10.1108/JM2-08-2023-0171

    Article  Google Scholar 

  35. Bessler DA (1982) Adaptive expectations, the exponentially weighted forecast, and optimal statistical predictors: a revisit. Agric Econ Res 34:16–23. https://doi.org/10.22004/ag.econ.148819

    Article  Google Scholar 

  36. Xu X, Thurman W (2015) Forecasting local grain prices: an evaluation of composite models in 500 corn cash markets. https://doi.org/10.22004/ag.econ.205332

  37. Brandt JA, Bessler DA (1981) Composite forecasting: an application with us hog prices. Am J Agr Econ 63:135–140. https://doi.org/10.2307/1239819

    Article  Google Scholar 

  38. Bessler DA, Chamberlain PJ (1988) Composite forecasting with Dirichlet priors. Decis Sci 19:771–781. https://doi.org/10.1111/j.1540-5915.1988.tb00302.x

    Article  Google Scholar 

  39. Xu X (2014) Cointegration and price discovery in us corn markets. https://doi.org/10.13140/RG.2.2.30153.49768

  40. McIntosh CS, Bessler DA (1988) Forecasting agricultural prices using a Bayesian composite approach. J Agric Appl Econ 20:73–80. https://doi.org/10.1017/S0081305200017611

    Article  Google Scholar 

  41. Bessler DA, Brandt JA (1981) Forecasting livestock prices with individual and composite methods. Appl Econ 13:513–522. https://doi.org/10.1080/00036848100000016

    Article  Google Scholar 

  42. Xu X (2015) Cointegration among regional corn cash prices. Econ Bull 35:2581–2594

    Google Scholar 

  43. Bessler DA (1990) Forecasting multiple time series with little prior information. Am J Agr Econ 72:788–792. https://doi.org/10.2307/1243059

    Article  Google Scholar 

  44. Bessler DA, Babula RA (1987) Forecasting wheat exports: Do exchange rates matter? J Bus Econ Stat 5:397–406. https://doi.org/10.2307/1391615

    Article  Google Scholar 

  45. Xu X (2018) Causal structure among us corn futures and regional cash prices in the time and frequency domain. J Appl Stat 45:2455–2480. https://doi.org/10.1080/02664763.2017.1423044

    Article  MathSciNet  Google Scholar 

  46. Brandt JA, Bessler DA (1982) Forecasting with a dynamic regression model: a heuristic approach. North Central J Agric Econ. https://doi.org/10.2307/1349096

    Article  Google Scholar 

  47. Brandt JA, Bessler DA (1984) Forecasting with vector autoregressions versus a univariate ARIMA process: An empirical example with us hog prices. North Central J Agric Econ. https://doi.org/10.2307/1349248

    Article  Google Scholar 

  48. Xu X (2015) Causality, price discovery, and price forecasts: evidence from us corn cash and futures markets

  49. Brandt JA, Bessler DA (1983) Price forecasting and evaluation: an application in agriculture. J Forecast 2:237–248. https://doi.org/10.1002/for.3980020306

    Article  Google Scholar 

  50. Yang J, Haigh MS, Leatham DJ (2001) Agricultural liberalization policy and commodity price volatility: a GARCH application. Appl Econ Lett 8:593–598. https://doi.org/10.1080/13504850010018734

    Article  Google Scholar 

  51. Xu X (2018) Linear and nonlinear causality between corn cash and futures prices. J Agric Food Ind Org 16:20160006. https://doi.org/10.1515/jafio-2016-0006

    Article  Google Scholar 

  52. Bessler DA, Yang J, Wongcharupan M (2003) Price dynamics in the international wheat market: modeling with error correction and directed acyclic graphs. J Reg Sci 43:1–33

    Article  Google Scholar 

  53. Bessler DA, Brandt JA (1992) An analysis of forecasts of livestock prices. J Econ Behav Org 18:249–263. https://doi.org/10.1016/0167-2681(92)90030-F

    Article  Google Scholar 

  54. Xu X (2018) Cointegration and price discovery in us corn cash and futures markets. Empir Econ 55:1889–1923. https://doi.org/10.1007/s00181-017-1322-6

    Article  Google Scholar 

  55. Bessler DA, Hopkins JC (1986) Forecasting an agricultural system with random walk priors. Agric Syst 21:59–67. https://doi.org/10.1016/0308-521X(86)90029-6

    Article  Google Scholar 

  56. Xu X (2017) The rolling causal structure between the Chinese stock index and futures. Financ Mark Portf Manag 31:491–509. https://doi.org/10.1007/s11408-017-0299-7

    Article  Google Scholar 

  57. Chen DT, Bessler DA (1990) Forecasting monthly cotton price: structural and time series approaches. Int J Forecast 6:103–113. https://doi.org/10.1016/0169-2070(90)90101-G

    Article  Google Scholar 

  58. Xu X (2018) Intraday price information flows between the CSI300 and futures market: an application of wavelet analysis. Empir Econ 54:1267–1295. https://doi.org/10.1007/s00181-017-1245-2

    Article  Google Scholar 

  59. Wang Z, Bessler DA (2004) Forecasting performance of multivariate time series models with full and reduced rank: an empirical examination. Int J Forecast 20:683–695. https://doi.org/10.1016/j.ijforecast.2004.01.002

    Article  Google Scholar 

  60. Xu X (2019) Contemporaneous causal orderings of CSI300 and futures prices through directed acyclic graphs. Econ Bull 39:2052–2077

    Google Scholar 

  61. Chen DT, Bessler DA (1987) Forecasting the us cotton industry: structural and time series approaches. In: Proceedings of the NCR-134 conference on applied commodity price analysis. Forecasting, and market risk management. Chicago Mercantile Exchange, Chicago. https://doi.org/10.22004/ag.econ.285463

  62. Xu X, Zhang Y (2021) Individual time series and composite forecasting of the Chinese stock index. Mach Learn Appl 5:100035. https://doi.org/10.1016/j.mlwa.2021.100035

    Article  Google Scholar 

  63. Bessler DA, Kling JL (1986) Forecasting vector autoregressions with Bayesian priors. Am J Agr Econ 68:144–151. https://doi.org/10.2307/1241659

    Article  Google Scholar 

  64. Xu X, Zhang Y (2022) Contemporaneous causality among one hundred Chinese cities. Empir Econ 63:2315–2329. https://doi.org/10.1007/s00181-021-02190-5

    Article  Google Scholar 

  65. Babula RA, Bessler DA, Reeder J, Somwaru A (2004) Modeling us soy-based markets with directed acyclic graphs and Bernanke structural VAR methods: the impacts of high soy meal and soybean prices. J Food Distrib Res 35:29–52. https://doi.org/10.22004/ag.econ.27559

    Article  Google Scholar 

  66. Xu X, Zhang Y (2023) House price information flows among some major Chinese cities: linear and nonlinear causality in time and frequency domains. Int J Hous Mark Anal 16:1168–1192. https://doi.org/10.1108/IJHMA-07-2022-0098

    Article  Google Scholar 

  67. Yang J, Zhang J, Leatham DJ (2003) Price and volatility transmission in international wheat futures markets. Ann Econ Finance 4:37–50

    Google Scholar 

  68. Xu X, Zhang Y (2023) Contemporaneous causality among residential housing prices of ten major Chinese cities. Int J Hous Mark Anal 16:792–811. https://doi.org/10.1108/IJHMA-03-2022-0039

    Article  Google Scholar 

  69. Awokuse TO, Yang J (2003) The informational role of commodity prices in formulating monetary policy: a reexamination. Econ Lett 79:219–224. https://doi.org/10.1016/S0165-1765(02)00331-2

    Article  Google Scholar 

  70. Xu X, Zhang Y (2023) Cointegration between housing prices: evidence from one hundred Chinese cities. J Prop Res 40:53–75. https://doi.org/10.1080/09599916.2022.2114926

    Article  Google Scholar 

  71. Yang J, Awokuse TO (2003) Asset storability and hedging effectiveness in commodity futures markets. Appl Econ Lett 10:487–491. https://doi.org/10.1080/1350485032000095366

    Article  Google Scholar 

  72. Xu X, Zhang Y (2023) Dynamic relationships among composite property prices of major Chinese cities: contemporaneous causality through vector error corrections and directed acyclic graphs. Int J Real Estate Stud 17:148–157. https://doi.org/10.11113/intrest.v17n1.294

    Article  Google Scholar 

  73. Yang J, Leatham DJ (1998) Market efficiency of us grain markets: application of cointegration tests. Agribus Int J 14:107–112.

    Article  Google Scholar 

  74. Xu X, Zhang Y (2023) An integrated vector error correction and directed acyclic graph method for investigating contemporaneous causalities. Decis Anal J 7:100229. https://doi.org/10.1016/j.dajour.2023.100229

    Article  Google Scholar 

  75. Yang J, Li Z, Wang T (2021) Price discovery in Chinese agricultural futures markets: a comprehensive look. J Futur Mark 41:536–555. https://doi.org/10.1002/fut.22179

    Article  Google Scholar 

  76. Xu X, Zhang Y (2023) Contemporaneous causality among regional steel price indices of east, south, north, central south, northeast, southwest, and northwest China. Miner Econ. https://doi.org/10.1007/s13563-023-00380-4

    Article  Google Scholar 

  77. Yang Q, Wang Z (2019) Fuzzy model applied in risk perception and price forecasts. Int J Fuzzy Syst 21:1906–1918. https://doi.org/10.1007/s40815-019-00651-9

    Article  Google Scholar 

  78. Xu X, Zhang Y (2021) House price forecasting with neural networks. Intell Syst Appl 12:200052. https://doi.org/10.1016/j.iswa.2021.200052

    Article  Google Scholar 

  79. Ge Q, Jiang H, He M, Zhu Y, Zhang J (2020) Power load forecast based on fuzzy BP neural networks with dynamical estimation of weights. Int J Fuzzy Syst 22:956–969. https://doi.org/10.1007/s40815-019-00796-7

    Article  Google Scholar 

  80. Xu X, Zhang Y (2022) Forecasting the total market value of a shares traded in the Shenzhen stock exchange via the neural network. Econ Bull

  81. Antwi E, Gyamfi EN, Kyei KA, Gill R, Adam AM (2022) Modeling and forecasting commodity futures prices: decomposition approach. IEEE Access 10:27484–27503. https://doi.org/10.1109/ACCESS.2022.3152694

    Article  Google Scholar 

  82. Xu X, Zhang Y (2023) Wholesale food price index forecasts with the neural network. Int J Comput Intell Appl 22:2350024. https://doi.org/10.1142/S1469026823500244

    Article  Google Scholar 

  83. Wan H, Zhou Y (2021) Neural network model comparison and analysis of prediction methods using ARIMA and LSTM models. In: 2021 IEEE international conference on advances in electrical engineering and computer applications (AEECA). IEEE, pp 640–643. https://doi.org/10.1109/AEECA52519.2021.9574427

  84. Xu X, Zhang Y (2022) Thermal coal price forecasting via the neural network. Intell Syst Appl 14:200084. https://doi.org/10.1016/j.iswa.2022.200084

    Article  Google Scholar 

  85. Ayankoya K, Calitz AP, Greyling JH (2016) Using neural networks for predicting futures contract prices of white maize in south Africa. In: Proceedings of the annual conference of the south African institute of computer scientists and information technologists, pp 1–10. https://doi.org/10.1145/2987491.2987508

  86. Xu X, Zhang Y (2023) Coking coal futures price index forecasting with the neural network, Mineral. Economics 36:349–359. https://doi.org/10.1007/s13563-022-00311-9

    Article  Google Scholar 

  87. Surjandari I, Naffisah MS, Prawiradinata MI (2015) Text mining of twitter data for public sentiment analysis of staple foods price changes. J Ind Intell Inf. https://doi.org/10.12720/jiii.3.3.253-257

    Article  Google Scholar 

  88. Xu X, Zhang Y (2023) China mainland new energy index price forecasting with the neural network. Energy Nexus 10:100210. https://doi.org/10.1016/j.nexus.2023.100210

    Article  Google Scholar 

  89. Ribeiro MHDM, Ribeiro VHA, Reynoso-Meza G, dos Santos Coelho L (2019) Multi-objective ensemble model for short-term price forecasting in corn price time series. In: 2019 International joint conference on neural networks (IJCNN). IEEE, pp 1–8. https://doi.org/10.1109/IJCNN.2019.8851880

  90. Xu X, Zhang Y (2023) Regional steel price index forecasts with neural networks: evidence from east, south, north, central south, northeast, southwest, and northwest China. J Supercomput 79:13601–13619. https://doi.org/10.1007/s11227-023-05207-1

    Article  Google Scholar 

  91. Zelingher R, Makowski D, Brunelle T (2020) Forecasting impacts of agricultural production on global maize price

  92. Xu X, Zhang Y (2023) A Gaussian process regression machine learning model for forecasting retail property prices with Bayesian optimizations and cross-validation. Decis Anal J 8:100267. https://doi.org/10.1016/j.dajour.2023.100267

    Article  Google Scholar 

  93. Silalahi DD (2013) Application of neural network model with genetic algorithm to predict the international price of crude palm oil (CPO) and soybean oil (SBO). In: 12th National convention on statistics (NCS), Mandaluyong City, Philippine, October, pp 1–2

  94. Xu X, Zhang Y (2022) Canola and soybean oil price forecasts via neural networks. Adv Comput Intell 2:32. https://doi.org/10.1007/s43674-022-00045-9

    Article  Google Scholar 

  95. Li G, Chen W, Li D, Wang D, Xu S (2020) Comparative study of short-term forecasting methods for soybean oil futures based on LSTM, SVR, ES and wavelet transformation. In: Journal of physics: conference series, vol 1682. IOP Publishing, p 012007. https://doi.org/10.1088/1742-6596/1682/1/012007

  96. Xu X, Zhang Y (2022) Soybean and soybean oil price forecasting through the nonlinear autoregressive neural network (NARNN) and NARNN with exogenous inputs (NARNN-X). Intell Syst Appl 13:200061. https://doi.org/10.1016/j.iswa.2022.200061

    Article  Google Scholar 

  97. Mayabi TW (2019) An artificial neural network model for predicting retail maize prices in Kenya. Ph.D. thesis, University of Nairobi

  98. Xu X, Zhang Y (2021) Corn cash price forecasting with neural networks. Comput Electron Agric 184:106120. https://doi.org/10.1016/j.compag.2021.106120

    Article  Google Scholar 

  99. Moreno RS, Salazar OZ (2018) An artificial neural network model to analyze maize price behavior in mexico. Appl Math 9:473. https://doi.org/10.4236/am.2018.95034

    Article  Google Scholar 

  100. Xu X, Zhang Y (2021) Network analysis of corn cash price comovements. Mach Learn Appl 6:100140. https://doi.org/10.1016/j.mlwa.2021.100140

    Article  Google Scholar 

  101. Zelingher R, Makowski D, Brunelle T (2021) Assessing the sensitivity of global maize price to regional productions using statistical and machine learning methods. Front Sustain Food Syst 5:171. https://doi.org/10.3389/fsufs.2021.655206

    Article  Google Scholar 

  102. Xu X, Zhang Y (2022) Commodity price forecasting via neural networks for coffee, corn, cotton, oats, soybeans, soybean oil, sugar, and wheat. Intell Syst Account Finance Manag 29:169–181. https://doi.org/10.1002/isaf.1519

    Article  Google Scholar 

  103. Shahhosseini M, Hu G, Huber I, Archontoulis SV (2021) Coupling machine learning and crop modeling improves crop yield prediction in the us corn belt. Sci Rep 11:1–15. https://doi.org/10.1038/s41598-020-80820-1

    Article  Google Scholar 

  104. Xu X, Zhang Y (2023) Corn cash-futures basis forecasting via neural networks. Adv Comput Intell 3:8. https://doi.org/10.1007/s43674-023-00054-2

    Article  Google Scholar 

  105. Shahhosseini M, Hu G, Archontoulis S (2020) Forecasting corn yield with machine learning ensembles. Front Plant Sci 11:1120. https://doi.org/10.3389/fpls.2020.01120

    Article  Google Scholar 

  106. Xu X, Zhang Y (2023) Yellow corn wholesale price forecasts via the neural network. Economia 24:44–67. https://doi.org/10.1108/ECON-05-2022-0026

    Article  Google Scholar 

  107. dos Reis Filho IJ, Correa GB, Freire GM, Rezende SO (2020) Forecasting future corn and soybean prices: an analysis of the use of textual information to enrich time-series. In: Anais do VIII symposium on knowledge discovery, mining and learning. SBC, pp 113–120

  108. Singh A, Mishra G (2015) Application of Box–Jenkins method and artificial neural network procedure for time series forecasting of prices. Stat Transit New Ser 16:83–96

    Article  Google Scholar 

  109. Mishra G, Singh A (2013) A study on forecasting prices of groundnut oil in Delhi by ARIMA methodology and artificial neural networks. Agris on Line Pap Econ Inform 5:25–34. https://doi.org/10.22004/ag.econ.157527

    Article  Google Scholar 

  110. Zong J, Zhu Q (2012) Price forecasting for agricultural products based on BP and RBF neural network. In: 2012 IEEE international conference on computer science and automation engineering. IEEE pp 607–610. https://doi.org/10.1109/ICSESS.2012.6269540

  111. Yin Y, Zhu Q (2012) Effect of magnitude differences in the raw data on price forecasting using RBF neural network. In: 11th International symposium on distributed computing and applications to business. Engineering & Science. IEEE 2012:237–240. https://doi.org/10.1109/DCABES.2012.19

  112. Zong J, Zhu Q (2012) Apply grey prediction in the agriculture production price. In: 2012 Fourth international conference on multimedia information networking and security. IEEE, pp 396–399. https://doi.org/10.1109/MINES.2012.78

  113. Quan-Yin Z, Yong-Hu Y, Yun-Yang Y, Tian-Feng G (2014) A novel efficient adaptive sliding window model for week-ahead price forecasting. TELKOMNIKA Indones J Electr Eng 12:2219–2226. https://doi.org/10.11591/telkomnika.v12i3.4490

    Article  Google Scholar 

  114. Zhu Q-Y, Yin Y-H, Zhu H-J, Zhou H (2014) Effect of magnitude differences in the original data on price forecasting. J Algorithms Comput Technol 8:389–420. https://doi.org/10.1260/1748-3018.8.4.389

    Article  Google Scholar 

  115. Kouadio L, Deo RC, Byrareddy V, Adamowski JF, Mushtaq S (2018) Artificial intelligence approach for the prediction of Robusta coffee yield using soil fertility properties. Comput Electron Agric 155:324–338. https://doi.org/10.1016/j.compag.2018.10.014

    Article  Google Scholar 

  116. Abreham Y (2019) Coffee price pridiction using machine-learning techniques, Ph.D. thesis, ASTU

  117. Huy HT, Thac HN, Thu HNT, Nhat AN, Ngoc VH (2019) Econometric combined with neural network for coffee price forecasting. J Appl Econ Sci 14:378–392

    Google Scholar 

  118. Degife WA, Sinamo A (2019) Efficient predictive model for determining critical factors affecting commodity price: The case of coffee in Ethiopian Commodity Exchange (ECZ). Int J Inf Eng Electron Bus 11:32–36. https://doi.org/10.5815/ijieeb.2019.06.05

    Article  Google Scholar 

  119. Naveena K, Subedar S (2017) Hybrid time series modelling for forecasting the price of washed coffee (arabica plantation coffee) in India. Int J Agric Sci, ISSN 0975–3710

  120. Lopes LP (2018) Prediction of the Brazilian natural coffee price through statistical machine learning models. SIGMAE 7:1–16

    Google Scholar 

  121. Deina C, do Amaral Prates MH, Alves CH, Martins MS, Trojan F, Stevan SL Jr, Siqueira HV (2021) A methodology for coffee price forecasting based on extreme learning machines. Inf Process Agric. https://doi.org/10.1016/j.inpa.2021.07.003

    Article  Google Scholar 

  122. Fang Y, Guan B, Wu S, Heravi S (2020) Optimal forecast combination based on ensemble empirical mode decomposition for agricultural commodity futures prices. J Forecast 39:877–886. https://doi.org/10.1002/for.2665

    Article  MathSciNet  Google Scholar 

  123. Ribeiro MHDM, dos Santos Coelho L (2020) Ensemble approach based on bagging, boosting and stacking for short-term prediction in agribusiness time series. Appl Soft Comput 86:105837. https://doi.org/10.1016/j.asoc.2019.105837

    Article  Google Scholar 

  124. Kohzadi N, Boyd MS, Kermanshahi B, Kaastra I (1996) A comparison of artificial neural network and time series models for forecasting commodity prices. Neurocomputing 10:169–181. https://doi.org/10.1016/0925-2312(95)00020-8

    Article  Google Scholar 

  125. Zou H, Xia G, Yang F, Wang H (2007) An investigation and comparison of artificial neural network and time series models for Chinese food grain price forecasting. Neurocomputing 70:2913–2923. https://doi.org/10.1016/j.neucom.2007.01.009

    Article  Google Scholar 

  126. Rasheed A, Younis MS, Ahmad F, Qadir J, Kashif M (2021) District wise price forecasting of wheat in Pakistan using deep learning. arXiv preprint arXiv:2103.04781

  127. Khamis A, Abdullah S (2014) Forecasting wheat price using backpropagation and NARX neural network. Int J Eng Sci 3:19–26

    Google Scholar 

  128. Dias J, Rocha H (2019) Forecasting wheat prices based on past behavior: comparison of different modelling approaches. In: International conference on computational science and its applications. Springer, pp 167–182

  129. Gómez D, Salvador P, Sanz J, Casanova JL (2021) Modelling wheat yield with antecedent information, satellite and climate data using machine learning methods in mexico. Agric For Meteorol 300:108317. https://doi.org/10.1016/j.agrformet.2020.108317

    Article  Google Scholar 

  130. Kanchymalay K, Salim N, Sukprasert A, Krishnan R, Hashim UR (2017) Multivariate time series forecasting of crude palm oil price using machine learning techniques. In: IOP Conference series: materials science and engineering, vol 226 IOP Publishing, p 012117. https://doi.org/10.1088/1757-899X/226/1/012117

  131. Li J, Li G, Liu M, Zhu X, Wei L (2020) A novel text-based framework for forecasting agricultural futures using massive online news headlines. Int J Forecast. https://doi.org/10.1016/j.ijforecast.2020.02.002

    Article  Google Scholar 

  132. Yoosefzadeh-Najafabadi M, Earl HJ, Tulpan D, Sulik J, Eskandari M (2021) Application of machine learning algorithms in plant breeding: predicting yield from hyperspectral reflectance in soybean. Front Plant Sci 11:2169. https://doi.org/10.3389/fpls.2020.624273

    Article  Google Scholar 

  133. Zhao H (2021) Futures price prediction of agricultural products based on machine learning. Neural Comput Appl 33:837–850. https://doi.org/10.1007/s00521-020-05250-6

    Article  Google Scholar 

  134. Jiang F, He J, Zeng Z (2019) Pigeon-inspired optimization and extreme learning machine via wavelet packet analysis for predicting bulk commodity futures prices, Science China. Inf Sci 62:1–19. https://doi.org/10.1007/s11432-018-9714-5

    Article  Google Scholar 

  135. Handoyo S, Chen YP (2020) The developing of fuzzy system for multiple time series forecasting with generated rule bases and optimized consequence part. SSRG Int J Eng Trends Technol 68:118–122. https://doi.org/10.14445/22315381/IJETT-V68I12P220

    Article  Google Scholar 

  136. Harris JJ (2017) A machine learning approach to forecasting consumer food prices

  137. Ali M, Deo RC, Downs NJ, Maraseni T (2018) Cotton yield prediction with Markov Chain Monte Carlo-based simulation model integrated with genetic programing algorithm: a new hybrid copula-driven approach. Agric For Meteorol 263:428–448. https://doi.org/10.1016/j.agrformet.2018.09.002

    Article  Google Scholar 

  138. Shahwan T, Odening M (2007) Forecasting agricultural commodity prices using hybrid neural networks. Comput Intell Econ Finance. Springer, Berlin, pp 63–74. https://doi.org/10.1007/978-3-540-72821-4_3

    Chapter  Google Scholar 

  139. Filippi P, Jones EJ, Wimalathunge NS, Somarathna PD, Pozza LE, Ugbaje SU, Jephcott TG, Paterson SE, Whelan BM, Bishop TF (2019) An approach to forecast grain crop yield using multi-layered, multi-farm data sets and machine learning. Precis Agric 20:1015–1029. https://doi.org/10.1007/s11119-018-09628-4

    Article  Google Scholar 

  140. Wen G, Ma B-L, Vanasse A, Caldwell CD, Earl HJ, Smith DL (2021) Machine learning-based canola yield prediction for site-specific nitrogen recommendations. Nutr Cycl Agroecosyst 121:241–256. https://doi.org/10.1007/s10705-021-10170-5

    Article  Google Scholar 

  141. Ribeiro CO, Oliveira SM (2011) A hybrid commodity price-forecasting model applied to the sugar–alcohol sector. Aust J Agric Resour Econ 55:180–198. https://doi.org/10.1111/j.1467-8489.2011.00534.x

    Article  Google Scholar 

  142. Zhang J, Meng Y, Wei J, Chen J, Qin J (2021) A novel hybrid deep learning model for sugar price forecasting based on time series decomposition. Math Probl Eng. https://doi.org/10.1155/2021/6507688

    Article  Google Scholar 

  143. Melo Bd, Milioni AZ, Nascimento Júnior CL (2007) Daily and monthly sugar price forecasting using the mixture of local expert models. Pesqui Oper 27:235–246. https://doi.org/10.1590/S0101-74382007000200003

    Article  Google Scholar 

  144. de Melo B, Júnior CN, Milioni AZ (2004) Daily sugar price forecasting using the mixture of local expert models. WIT Trans Inf Commun Technol. https://doi.org/10.2495/DATA040221

    Article  Google Scholar 

  145. Silva N, Siqueira I, Okida S, Stevan SL, Siqueira H (2019) Neural networks for predicting prices of sugarcane derivatives. Sugar Tech 21:514–523. https://doi.org/10.1007/s12355-018-0648-5

    Article  Google Scholar 

  146. Rl M, Mishra AK (2021) Forecasting spot prices of agricultural commodities in India: application of deep-learning models. Intell Syst Account Finance Manag 28:72–83. https://doi.org/10.1002/isaf.1487

    Article  Google Scholar 

  147. Xu X, Zhang Y (2023) Edible oil wholesale price forecasts via the neural network. Energy Nexus 12:100250. https://doi.org/10.1016/j.nexus.2023.100250

    Article  Google Scholar 

  148. Yuan CZ, San WW, Leong TW (2020) Determining optimal lag time selection function with novel machine learning strategies for better agricultural commodity prices forecasting in Malaysia. In: Proceedings of the 2020 2nd international conference on information technology and computer communications, pp 37–42. https://doi.org/10.1145/3417473.3417480

  149. Xu X, Zhang Y (2022) Rent index forecasting through neural networks. J Econ Stud 49:1321–1339. https://doi.org/10.1108/JES-06-2021-0316

    Article  Google Scholar 

  150. Bayona-Oré S, Cerna R, Tirado Hinojoza E (2021) Machine learning for price prediction for agricultural products. https://doi.org/10.37394/23207.2021.18.92

  151. Xu X, Zhang Y (2022) Second-hand house price index forecasting with neural networks. J Prop Res 39:215–236. https://doi.org/10.1080/09599916.2021.1996446

    Article  Google Scholar 

  152. Yang J, Su X, Kolari JW (2008) Do Euro exchange rates follow a martingale? Some out-of-sample evidence. J Bank Finance 32:729–740. https://doi.org/10.1016/j.jbankfin.2007.05.009

    Article  Google Scholar 

  153. Xu X, Zhang Y (2022) Residential housing price index forecasting via neural networks. Neural Comput Appl 34:14763–14776. https://doi.org/10.1007/s00521-022-07309-y

    Article  Google Scholar 

  154. Yang J, Cabrera J, Wang T (2010) Nonlinearity, data-snooping, and stock index ETF return predictability. Eur J Oper Res 200:498–507. https://doi.org/10.1016/j.ejor.2009.01.009

    Article  Google Scholar 

  155. Xu X, Zhang Y (2023) Neural network predictions of the high-frequency CSI300 first distant futures trading volume. Financ Mark Portf Manag 37:191–207. https://doi.org/10.1007/s11408-022-00421-y

    Article  Google Scholar 

  156. Wang T, Yang J (2010) Nonlinearity and intraday efficiency tests on energy futures markets. Energy Econ 32:496–503. https://doi.org/10.1016/j.eneco.2009.08.001

    Article  Google Scholar 

  157. Xu X, Zhang Y (2023) Retail property price index forecasting through neural networks. J Real Estate Portf Manag 29:1–28. https://doi.org/10.1080/10835547.2022.2110668

    Article  Google Scholar 

  158. Karasu S, Altan A, Bekiros S, Ahmad W (2020) A new forecasting model with wrapper-based feature selection approach using multi-objective optimization technique for chaotic crude oil time series. Energy 212:118750. https://doi.org/10.1016/j.energy.2020.118750

    Article  Google Scholar 

  159. Xu X, Zhang Y (2023) A high-frequency trading volume prediction model using neural networks. Decis Anal J 7:100235. https://doi.org/10.1016/j.dajour.2023.100235

    Article  Google Scholar 

  160. Wegener C, von Spreckelsen C, Basse T, von Mettenheim H-J (2016) Forecasting government bond yields with neural networks considering cointegration. J Forecast 35:86–92. https://doi.org/10.1002/for.2385

    Article  MathSciNet  Google Scholar 

  161. Xu X, Zhang Y (2023) High-frequency csi300 futures trading volume predicting through the neural network. Asian J Econ Bank. https://doi.org/10.1108/AJEB-05-2022-0051

    Article  Google Scholar 

  162. Karasu S, Altan A, Saraç Z, Hacioğlu R (2017) Prediction of wind speed with non-linear autoregressive (NAR) neural networks, in 25th Signal Processing and Communications Applications Conference (SIU). IEEE 2017:1–4. https://doi.org/10.1109/SIU.2017.7960507

  163. Xu X, Zhang Y (2023) Office property price index forecasting using neural networks. J Financ Manag Prop Constr. https://doi.org/10.1108/JFMPC-08-2022-0041

    Article  Google Scholar 

  164. Karasu S, Altan A, Saraç Z, Hacioğlu R (2017) Estimation of fast varied wind speed based on NARX neural network by using curve fitting. Int J Energy Appl Technol 4:137–146

    Google Scholar 

  165. Xu X, Zhang Y (2023) Scrap steel price forecasting with neural networks for east, north, south, central, northeast, and southwest China and at the national level. Ironmak Steelmak. https://doi.org/10.1080/03019233.2023.2218243

    Article  Google Scholar 

  166. Altan A, Karasu S, Zio E (2021) A new hybrid model for wind speed forecasting combining long short-term memory neural network, decomposition methods and grey wolf optimizer. Appl Soft Comput 100:106996. https://doi.org/10.1016/j.asoc.2020.106996

    Article  Google Scholar 

  167. Yuan X, Chen C, Lei X, Yuan Y, Muhammad Adnan R (2018) Monthly runoff forecasting based on LSTM-ALO model. Stoch Environ Res Risk Assess 32:2199–2212. https://doi.org/10.1007/s00477-018-1560-y

    Article  Google Scholar 

  168. Ikram RMA, Mostafa RR, Chen Z, Parmar KS, Kisi O, Zounemat-Kermani M (2023) Water temperature prediction using improved deep learning methods through reptile search algorithm and weighted mean of vectors optimizer. J Mar Sci Eng 11:259. https://doi.org/10.3390/jmse11020259

    Article  Google Scholar 

  169. Adnan RM, Mostafa RR, Dai H-L, Heddam S, Kuriqi A, Kisi O (2023) Pan evaporation estimation by relevance vector machine tuned with new metaheuristic algorithms using limited climatic data. Eng Appl Comput Fluid Mech 17:2192258. https://doi.org/10.1080/19942060.2023.2192258

    Article  Google Scholar 

  170. Mostafa RR, Kisi O, Adnan RM, Sadeghifar T, Kuriqi A (2023) Modeling potential evapotranspiration by improved machine learning methods using limited climatic data. Water 15:486. https://doi.org/10.3390/w15030486

    Article  Google Scholar 

  171. Adnan RM, Mostafa RR, Islam ARMT, Kisi O, Kuriqi A, Heddam S (2021) Estimating reference evapotranspiration using hybrid adaptive fuzzy inferencing coupled with heuristic algorithms. Comput Electron Agric 191:106541. https://doi.org/10.1016/j.compag.2021.106541

    Article  Google Scholar 

  172. Adnan RM, Dai H-L, Mostafa RR, Islam ARMT, Kisi O, Heddam S, Zounemat-Kermani M (2023) Modelling groundwater level fluctuations by elm merged advanced metaheuristic algorithms using hydroclimatic data. Geocarto Int 38:2158951. https://doi.org/10.1080/10106049.2022.2158951

    Article  Google Scholar 

  173. Adnan RM, Dai H-L, Mostafa RR, Parmar KS, Heddam S, Kisi O (2022) Modeling multistep ahead dissolved oxygen concentration using improved support vector machines by a hybrid metaheuristic algorithm. Sustainability 14:3470. https://doi.org/10.3390/su14063470

    Article  Google Scholar 

  174. Neal RM (2012) Bayesian learning for neural networks, vol 118. Springer Science & Business Media, Berlin

    Google Scholar 

  175. Neal RM (1997) Monte Carlo implementation of gaussian process models for Bayesian regression and classification. arXiv preprint arXiv:physics/9701026

  176. Williams C, Rasmussen C (1995) Gaussian processes for regression, advances in neural information processing systems. MIT Press, Cambridge

    Google Scholar 

  177. Brahim-Belhouari S, Vesin JM (2001) Bayesian learning using gaussian process for time series prediction. In: Proceedings of the 11th IEEE signal processing workshop on statistical signal processing (Cat. No. 01TH8563). IEEE, pp 433–436. https://doi.org/10.1109/SSP.2001.955315

  178. Brahim-Belhouari S, Bermak A (2004) Gaussian process for nonstationary time series prediction. Comput Stat Data Anal 47:705–712. https://doi.org/10.1016/j.csda.2004.02.006

    Article  MathSciNet  Google Scholar 

  179. Xu X, Zhang Y (2023) Price forecasts of ten steel products using gaussian process regressions. Eng Appl Artif Intell 126:106870. https://doi.org/10.1016/j.engappai.2023.106870

    Article  Google Scholar 

  180. Xu X, Zhang Y (2022) Network analysis of comovements among newly-built residential house price indices of seventy Chinese cities. Int J Hous Mark Anal. https://doi.org/10.1108/IJHMA-09-2022-0134

    Article  Google Scholar 

  181. Rezitis AN (2015) The relationship between agricultural commodity prices, crude oil prices and us dollar exchange rates: a panel VAR approach and causality analysis. Int Rev Appl Econ 29:403–434. https://doi.org/10.1080/02692171.2014.1001325

    Article  Google Scholar 

  182. Zhou L (2021) Application of ARIMA model on prediction of China’s corn market. In: Journal of physics: conference series, vol 1941. IOP Publishing, p 012064. https://doi.org/10.1088/1742-6596/1941/1/012064

  183. Crespo Cuaresma J, Hlouskova J, Obersteiner M (2021) Agricultural commodity price dynamics and their determinants: a comprehensive econometric approach. J Forecast 40:1245–1273. https://doi.org/10.1002/for.2768

    Article  MathSciNet  Google Scholar 

  184. Albuquerquemello VPd, Medeiros RKd, Jesus DPd, Oliveira FAd (2021) The role of transition regime models for corn prices forecasting. Rev Econ Sociol Rural. https://doi.org/10.1590/1806-9479.2021.236922

    Article  Google Scholar 

  185. Jaiswal R, Jha GK, Kumar RR, Choudhary K (2021) Deep long short-term memory based model for agricultural price forecasting. Neural Comput Appl. https://doi.org/10.1007/s00521-021-06621-3

    Article  Google Scholar 

  186. Silva RF, Barreira BL, Cugnasca CE (2021) Prediction of corn and sugar prices using machine learning, econometrics, and ensemble models. Eng Proc 9:31. https://doi.org/10.3390/engproc2021009031

    Article  Google Scholar 

  187. Xu X, Zhang Y (2023) Composite property price index forecasting with neural networks. Prop Manag. https://doi.org/10.1108/PM-11-2022-0086

    Article  Google Scholar 

  188. McGrath C, Covert E (2023) Grain and feed update (report number: Ch2023-0101)

  189. MordorIntelligence (2023) China maize market size & share analysis—growth trends & forecasts (2023–2028)

  190. Jarque CM, Bera AK (1980) Efficient tests for normality, homoscedasticity and serial independence of regression residuals. Econ Lett 6:255–259. https://doi.org/10.1016/0165-1765(80)90024-5

    Article  MathSciNet  Google Scholar 

  191. Anderson TW, Darling DA (1954) A test of goodness of fit. J Am Stat Assoc 49:765–769. https://doi.org/10.2307/2281537

    Article  Google Scholar 

  192. An K (1933) Sulla determinazione empirica di una legge didistribuzione. Giorn Dell’inst Ital Degli Att 4:89–91

    Google Scholar 

  193. Smirnov NV (1939) Network analysis of housing price comovements of a hundred Chinese cities. Bull Mosc Univ 2:3–16

    Google Scholar 

  194. Xu X (2014) Causality and price discovery in us corn markets: an application of error correction modeling and directed acyclic graphs. https://doi.org/10.22004/ag.econ.169806

  195. Xu X, Zhang Y (2023) Network analysis of housing price comovements of a hundred Chinese cities. Natl Inst Econ Rev 264:110–128. https://doi.org/10.1017/nie.2021.34

    Article  Google Scholar 

  196. Xu X, Zhang Y (2023) Spatio-temporal analysis of residential housing, office property, and retail property price index correlations: evidence from ten Chinese cities. Int J Real Estate Stud 17:1–13

    Article  Google Scholar 

  197. Tayyab M, Zhou J, Adnan R, Meng C, Zahra A (2016) Streamflow prediction by applying generalized regression network with time series decomposition method. Indones J Electr Eng Comput Sci 4:611–616. https://doi.org/10.11591/ijeecs.v4.i3.pp611-616

    Article  Google Scholar 

  198. Adnan RM, Mostafa RR, Kisi O, Yaseen ZM, Shahid S, Zounemat-Kermani M (2021) Improving streamflow prediction using a new hybrid elm model combined with hybrid particle swarm optimization and grey wolf optimization. Knowl Based Syst 230:107379. https://doi.org/10.1016/j.knosys.2021.107379

    Article  Google Scholar 

  199. Zhang Y, Xu X (2020) Machine learning band gaps of doped-TiO\(_{2}\) photocatalysts from structural and morphological parameters. ACS Omega 5:15344–15352. https://doi.org/10.1021/acsomega.0c01438

    Article  Google Scholar 

  200. Han G-S, Lee J (2008) Prediction of pricing and hedging errors for equity linked warrants with gaussian process models. Expert Syst Appl 35:515–523. https://doi.org/10.1016/j.eswa.2007.07.041

    Article  Google Scholar 

  201. Zhang Y, Xu X (2020) Predicting the thermal conductivity enhancement of nanofluids using computational intelligence. Phys Lett A 384:126500. https://doi.org/10.1016/j.physleta.2020.126500

    Article  Google Scholar 

  202. Sureshkumar K, Elango N (2011) An efficient approach to forecast Indian stock market price and their performance analysis. Int J Comput Appl 34:44–49

    Google Scholar 

  203. Zhang Y, Xu X (2020) Yttrium barium copper oxide superconducting transition temperature modeling through gaussian process regression. Comput Mater Sci 179:109583. https://doi.org/10.1016/j.commatsci.2020.109583

    Article  Google Scholar 

  204. Mojaddady M, Nabi M, Khadivi S (2011) Stock market prediction using twin gaussian process regression. Int J Adv Comput Res (JACR) preprint

  205. Zhang Y, Xu X (2020) Curie temperature modeling of magnetocaloric lanthanum manganites using gaussian process regression. J Magn Magn Mater 512:166998. https://doi.org/10.1016/j.jmmm.2020.166998

    Article  Google Scholar 

  206. Li F, Gao F, Kou P (2015) Integrating piecewise linear representation and Gaussian process classification for stock turning points prediction. J Comput Appl 35:2397. https://doi.org/10.11772/j.issn.1001-9081.2015.08.2397

    Article  Google Scholar 

  207. Zhang Y, Xu X (2020) Machine learning decomposition onset temperature of lubricant additives. J Mater Eng Perform 29:6605–6616. https://doi.org/10.1007/s11665-020-05146-5

    Article  Google Scholar 

  208. Han J, Zhang X-P, Wang F (2016) Gaussian process regression stochastic volatility model for financial time series. IEEE J Sel Top Signal Process 10:1015–1028. https://doi.org/10.1109/JSTSP.2016.2570738

    Article  Google Scholar 

  209. Zhang Y, Xu X (2020) Machine learning lattice constants for cubic perovskite \(a_{2}xy_{6}\) compounds. J Solid State Chem 291:121558. https://doi.org/10.1016/j.jssc.2020.121558

    Article  Google Scholar 

  210. Liu S, Ma J (2016) Stock price prediction through the mixture of gaussian processes via the precise Hard-cut EM algorithm. In: Intelligent computing methodologies: 12th international conference, ICIC 2016, Lanzhou, China, August 2–5, 2016, Proceedings, Part III 12. Springer, pp 282–293. https://doi.org/10.1007/978-3-319-42297-8_27

  211. Zhang Y, Xu X (2021) Machine learning glass transition temperature of polyacrylamides using quantum chemical descriptors. Polym Chem 12:843–851. https://doi.org/10.1039/d0py01581d

    Article  Google Scholar 

  212. Zhang Y, Xu X (2020) Machine learning properties of electrolyte additives: a focus on redox potentials. Ind Eng Chem Res 60:343–354. https://doi.org/10.1021/acs.iecr.0c05055

    Article  Google Scholar 

  213. Zhang Y, Xu X (2021) Machine learning tensile strength and impact toughness of wheat straw reinforced composites. Mach Learn Appl 6:100188. https://doi.org/10.1016/j.mlwa.2021.100188

    Article  Google Scholar 

  214. Xu X, Zhang Y, Li Y, Li Y (2022) Machine learning cutting forces in milling processes of functionally graded materials. Adv Comput Intell 2:25. https://doi.org/10.1007/s43674-022-00036-w

    Article  Google Scholar 

  215. Zhang Y, Xu X (2021) Predicting multiple properties of pervious concrete through the Gaussian process regression. Adv Civ Eng Mater 10:56–73. https://doi.org/10.1520/ACEM20200134

    Article  Google Scholar 

  216. Zhang Y, Xu X (2021) Machine learning the lattice constant of cubic pyrochlore compounds. Int J Appl Ceram Technol 18:661–676. https://doi.org/10.1111/ijac.13709

    Article  Google Scholar 

  217. Rasmussen CE, Williams CK et al (2006) Gaussian processes for machine learning, vol 1. Springer, Berlin

    Google Scholar 

  218. Zhang Y, Xu X (2021) Machine learning F-doped Bi (Pb)–SR–Ca–Cu-O superconducting transition temperature. J Supercond Novel Magn 34:63–73. https://doi.org/10.1007/s10948-020-05682-0

    Article  Google Scholar 

  219. Zhang Y, Xu X (2021) Predicting doped FE-based superconductor critical temperature from structural and topological parameters using machine learning. Int J Mater Res 112:2–9. https://doi.org/10.1515/ijmr-2020-7986

    Article  Google Scholar 

  220. Alade IO, Zhang Y, Xu X (2021) Modeling and prediction of lattice parameters of binary spinel compounds (am\(_{2}\)x\(_{4}\)) using support vector regression with bayesian optimization. New J Chem 45:15255–15266. https://doi.org/10.1039/d1nj01523k

    Article  Google Scholar 

  221. Zhang Y, Xu X (2022) Modulus of elasticity predictions through LSBoost for concrete of normal and high strength. Mater Chem Phys 283:126007. https://doi.org/10.1016/j.matchemphys.2022.126007

    Article  Google Scholar 

  222. Zhang Y, Xu X (2021) Modeling of lattice parameters of cubic perovskite oxides and halides. Heliyon 7:e07601. https://doi.org/10.1016/j.heliyon.2021.e07601

    Article  Google Scholar 

  223. Zhang Y, Xu X (2021) Machine learning lattice constants of zircon-group minerals MXO\(_{4}\). Struct Chem 32:1311–1326. https://doi.org/10.1007/s11224-020-01699-2

    Article  Google Scholar 

  224. Zhang Y, Xu X (2021) Machine learning bioactive compound solubilities in supercritical carbon dioxide. Chem Phys 550:111299. https://doi.org/10.1016/j.chemphys.2021.111299

    Article  Google Scholar 

  225. Zhang Y, Xu X (2022) Machine learning surface roughnesses in turning processes of brass metals. Int J Adv Manuf Technol 121:2437–2444. https://doi.org/10.1007/s00170-022-09498-1

    Article  Google Scholar 

  226. Zhang Y, Xu X (2021) Machine learning steel \(m_{s}\) temperature. Simulation 97:383–425. https://doi.org/10.1177/0037549721995574

    Article  Google Scholar 

  227. Bull AD (2011) Convergence rates of efficient global optimization algorithms. J Mach Learn Res 12:2879–2904

    MathSciNet  Google Scholar 

  228. Xu X, Zhang Y (2022) Machine learning the concrete compressive strength from mixture proportions. ASME Open J Eng 1:011037. https://doi.org/10.1115/1.4055194

    Article  Google Scholar 

  229. Zhang Y, Xu X (2021) Machine learning glass transition temperature of polymethacrylates. Mol Cryst Liq Cryst 730:9–22. https://doi.org/10.1080/15421406.2021.1946348

    Article  Google Scholar 

  230. Zhang Y, Xu X (2021) Predicting lattice parameters for orthorhombic distorted-perovskite oxides via machine learning. Solid State Sci 113:106541. https://doi.org/10.1016/j.solidstatesciences.2021.106541

    Article  Google Scholar 

  231. Zhang Y, Xu X (2022) Predicting thrust force during drilling of composite laminates with step drills through the gaussian process regression. Multidiscip Model Mater Struct 18:845–855. https://doi.org/10.1108/MMMS-07-2022-0123

    Article  Google Scholar 

  232. Jamieson P, Porter J, Wilson D (1991) A test of the computer simulation model arcwheat1 on wheat crops grown in New Zealand. Field Crop Res 27:337–350. https://doi.org/10.1016/0378-4290(91)90040-3

    Article  Google Scholar 

  233. Heinemann AB, Van Oort PA, Fernandes DS, Maia ADHN (2012) Sensitivity of APSIM/ORYZA model due to estimation errors in solar radiation. Bragantia 71:572–582. https://doi.org/10.1590/S0006-87052012000400016

    Article  Google Scholar 

  234. Li M-F, Tang X-P, Wu W, Liu H-B (2013) General models for estimating daily global solar radiation for different solar radiation zones in mainland china. Energy Convers Manage 70:139–148. https://doi.org/10.1016/j.enconman.2013.03.004

    Article  Google Scholar 

  235. Despotovic M, Nedic V, Despotovic D, Cvetanovic S (2016) Evaluation of empirical models for predicting monthly mean horizontal diffuse solar radiation. Renew Sustain Energy Rev 56:246–260. https://doi.org/10.1016/j.rser.2015.11.058

    Article  Google Scholar 

  236. Timmermann A (2006) Forecast combinations. Handb Econ Forecast 1:135–196. https://doi.org/10.1016/S1574-0706(05)01004-9

    Article  Google Scholar 

  237. Costantini M, Gunter U, Kunst RM (2017) Forecast combinations in a DSGE-VAR lab. J Forecast 36:305–324. https://doi.org/10.1002/for.2427

    Article  MathSciNet  Google Scholar 

  238. Semmlow J (2011) Signals and systems for bioengineers: a MATLAB-based introduction. Academic Press, Cambridge

    Google Scholar 

  239. Ou P, Wang H (2011) Volatility prediction by treed gaussian process with limiting linear model. Int J Model Simul 31:166–174. https://doi.org/10.2316/Journal.205.2011.2.205-5498

    Article  Google Scholar 

  240. Ou P, Wang H (2011) Forecasting volatility switching arch by treed gaussian process with jumps to the limiting linear model. Int J Comput Appl 33:355–361. https://doi.org/10.2316/Journal.202.2011.4.202-3260

    Article  Google Scholar 

  241. Ou P, Wang H (2011c) Modeling and forecasting stock market volatility by Gaussian processes based on GARCH, EGARCH and GJR models. In: Proceedings of the world congress on engineering, vol 1, pp 1–5

  242. Han J, Zhang XP (2015) Financial time series volatility analysis using gaussian process state-space models. In: 2015 IEEE Global conference on signal and information processing (GlobalSIP). IEEE, pp 358–362. https://doi.org/10.1109/GlobalSIP.2015.7418217

  243. Diebold FX, Mariano RS (2002) Comparing predictive accuracy. J Bus Econ Stat 20:134–144. https://doi.org/10.2307/1392185

    Article  MathSciNet  Google Scholar 

  244. Harvey D, Leybourne S, Newbold P (1997) Testing the equality of prediction mean squared errors. Int J Forecast 13:281–291. https://doi.org/10.1016/S0169-2070(96)00719-4

    Article  Google Scholar 

  245. Breiman L (2017) Classification and regression trees. Routledge, Milton Park

    Book  Google Scholar 

  246. Qian L, Chen Z, Huang Y, Stanford RJ (2023) Employing categorical boosting (CatBoost) and meta-heuristic algorithms for predicting the urban gas consumption. Urban Clim 51:101647. https://doi.org/10.1016/j.uclim.2023.101647

    Article  Google Scholar 

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojie Xu.

Ethics declarations

Conflict of interest

The authors did not receive support from any organization for the submitted work. The authors have no relevant financial or non-financial interests to disclose.

Ethical Approval

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, B., Xu, X. Forecasting wholesale prices of yellow corn through the Gaussian process regression. Neural Comput & Applic 36, 8693–8710 (2024). https://doi.org/10.1007/s00521-024-09531-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-024-09531-2

Keywords

Navigation