Impacts of Energy Price on Agricultural Production, Energy Consumption, and Carbon Emission in China: A Price Endogenous Partial Equilibrium Model Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Model Construction
- Integration of domestic market. Agricultural commodities can be traded and transported freely among provinces.
- Stabilization of international trade. Domestic supplies are sufficient, import or export quantities do not exceed base year numbers.
- Rationality of agricultural producers (or farmers). They autonomously adjust their producing behaviors with the purpose of maximizing welfare.
- Other production inputs and their quantities remain constant.
2.2. Data Source
2.3. Model Calibration
2.4. Scenario Design
3. Results
3.1. Agricultural Cultivated Area and Welfare
3.2. Agricultural Energy Consumption and Carbon Emission of Main Crops
3.3. Agricultural Energy Consumption and Carbon Emission of Different Regions
4. Discussion
5. Conclusions and Policy Implications
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Shen, Z.; Baležentis, T.; Chen, X.; Valdmanisef, V. Green growth and structural change in Chinese agricultural sector during 1997–2014. China Econ. Rev. 2018, 51, 83–96. [Google Scholar] [CrossRef]
- Jin, S.; Lin, Y.; Niu, K. Driving green transformation of agriculture with low carbon: Characteristics of agricultural carbon emissions and its emission reduction path in China. Reform 2021, 5, 29–37. [Google Scholar]
- Dodder, R.S.; Kaplan, P.O.; Elobeid, A.; Tokgozc, S.; Secchid, S.; KurkalovaefImpact, L.A. Impact of energy prices and cellulosic biomass supply on agriculture, energy, and the environment: An integrated modeling approach. Energy Econ. 2015, 51, 77–87. [Google Scholar] [CrossRef]
- Yahya, M.; Oglend, A.; Dahl, R.E. Temporal and spectral dependence between crude oil and agricultural commodities: A wavelet-based copula approach. Energy Econ. 2019, 80, 277–296. [Google Scholar] [CrossRef]
- Zafeiriou, E.; Arabatzis, G.; Karanikola, P.; Tampakis, S.; Tsiantikoudis, S. Agricultural commodities and crude oil prices: An empirical investigation of their relationship. Sustainability 2018, 10, 1199. [Google Scholar] [CrossRef] [Green Version]
- Asgari, M.; Saghaian, S.H.; Reed, M. The impact of energy sector on overshooting of agricultural prices. Am. J. Agric. Econ. 2020, 102, 589–606. [Google Scholar] [CrossRef]
- Bahel, E.; Marrouch, W.; Gaudet, G. The economics of oil, biofuel and food commodities. Resour. Energy Econ. 2013, 35, 599–617. [Google Scholar] [CrossRef] [Green Version]
- Lundberg, C.; Skolrud, T.; Adrangi, B.; Chatrath, A. Oil price pass through to agricultural commodities. Am. J. Agric. Econ. 2021, 103, 721–742. [Google Scholar] [CrossRef]
- Taghizadeh-Hesary, F.; Rasoulinezhad, E.; Yoshino, N. Energy and food security: Linkages through price volatility. Energy Policy 2019, 128, 796–806. [Google Scholar] [CrossRef]
- Li, Z.; Gong, Y.; Chen, K.Z. Energy use and rural poverty: Empirical evidence from potato farmers in northern China. China Agric. Econ. Rev. 2019, 11, 280–297. [Google Scholar] [CrossRef]
- Karkacier, O.; Goktolga, G.; Cicek, A. A regression analysis of the effect of energy use in agriculture. Energy Policy 2006, 34, 3796–3800. [Google Scholar] [CrossRef]
- Troost, C.; Walter, T.; Berger, T. Climate, energy and environmental policies in agriculture: Simulating likely farmer responses in southwest Germany. Land Use Policy 2015, 46, 50–64. [Google Scholar] [CrossRef] [Green Version]
- Pfeiffer, L.; Lin, C. The effects of energy prices on agricultural groundwater extraction from the high plains aquifer. Am. J. Agric. Econ. 2014, 96, 1349–1362. [Google Scholar] [CrossRef] [Green Version]
- Morris, W.; Bowen, R. Renewable energy diversification: Considerations for farm business resilience. J. Rural Stud. 2020, 80, 380–390. [Google Scholar] [CrossRef]
- Fei, R.; Lin, B. Estimates of energy demand and energy saving potential in China’s agricultural sector. Energy 2017, 135, 865–875. [Google Scholar] [CrossRef]
- Wang, J.; Fu, Z.; Zhang, B.; Yang, F.; Zhang, L.; Shi, B. Decomposition of influencing factors and its spatial-temporal characteristics of vegetable production: A case study of China. Inf. Proc. Agric. 2018, 5, 477–489. [Google Scholar] [CrossRef]
- Li, W.; Ou, Q.; Chen, Y. Decomposition of China’s co2 emissions from agriculture utilizing an improved kaya identity. Environ. Sci. Pollut. Res. 2014, 21, 13000–13006. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Zhang, J.; He, Y. Research on spatial-temporal characteristics and driving factor of agricultural carbon emissions in China. J. Integr. Agric. 2014, 13, 1393–1403. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Gao, B.; Pan, Y. Changes in gross output value of planting industry and their decomposition of crops in China based on the LMDI model. Agric. Res. 2016, 5, 89–97. [Google Scholar] [CrossRef]
- Long, X.; Luo, Y.; Wu, C.; Zhang, J. The influencing factors of CO2 emission intensity of Chinese agriculture from 1997 to 2014. Environ. Sci. Pollut. Res. 2018, 25, 13093–13101. [Google Scholar] [CrossRef] [PubMed]
- Wei, W.; Wen, C.; Cui, Q.; Xie, W. The impacts of technological advance on agricultural energy use and carbon emission–An analysis based on GTAP-E model. J. Agrotech. Econ. 2018, 11, 30–40. [Google Scholar]
- Li, K.; Fang, L.; He, L. The impact of energy price on CO2 emissions in China: A spatial econometric analysis. Sci. Total Environ. 2019, 706, 135942. [Google Scholar] [CrossRef] [PubMed]
- Miao, C.; Fang, D.; Sun, L.; Luo, Q.; Yu, Q. Driving effect of technology innovation on energy utilization efficiency in strategic emerging industries. J. Clean. Prod. 2018, 170, 1177–1184. [Google Scholar] [CrossRef]
- Wurlod, J.; Noailly, J. The impact of green innovation on energy intensity: An empirical analysis for 14 industrial sectors in OECD countries. Energy Econ. 2018, 71, 47–61. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Jin, P.; Qiao, H.; Hayat, T.; Alsaedi, A.; Ahmad, B. Exergy analysis of Chinese agriculture. Ecol. Indic. 2017, 105, 279–291. [Google Scholar] [CrossRef]
- Liao, H.; Fan, Y.; Wei, Y. What induced China’s energy intensity to fluctuate: 1997–2006? Energy Policy 2007, 35, 4640–4649. [Google Scholar] [CrossRef]
- Zeng, L.; Xu, M.; Liang, S.; Zeng, S.; Zhang, T. Revisiting drivers of energy intensity in China during 1997–2007: A structural decomposition analysis. Energy Policy 2014, 67, 640–647. [Google Scholar] [CrossRef]
- Lin, B.; Fei, R. Regional differences of CO2 emissions performance in China’s agricultural sector: A Malmquist index approach. Eur. J. Agron. 2015, 70, 33–40. [Google Scholar] [CrossRef]
- Fei, R.; Lin, B. The integrated efficiency of inputs–outputs and energy–CO2 emissions performance of China’s agricultural sector. Renew. Sustain. Energy Rev. 2017, 75, 668–676. [Google Scholar] [CrossRef]
- Fei, R.; Lin, B. Energy efficiency and production technology heterogeneity in China’s agricultural sector: A meta-frontier approach. Technol. Forecast. Soc. Chang. 2016, 109, 25–34. [Google Scholar] [CrossRef]
- Jiang, M.; Hu, X.; Chunga, J.; Lin, Z.; Fei, R. Does the popularization of agricultural mechanization improve energy-environment performance in China’s agricultural sector? J. Clean. Prod. 2020, 276, 124210. [Google Scholar] [CrossRef]
- Pan, A.; Sun, Q.; Wang, Q.; Chunga, J.; Zong, Z.; Fei, R. Energy rebound effect associated with energy efficiency: An application to China’s agricultural sector. Int. J. Environ. Sci. Technol. 2021, 18, 3819–3832. [Google Scholar] [CrossRef]
- Wu, S.; Ding, S. Efficiency improvement, structural change, and energy intensity reduction: Evidence from Chinese agricultural sector. Energy Econ. 2021, 99, 105313. [Google Scholar] [CrossRef]
- Yu, Y.; Jiang, T.; Li, S.; Li, X.; Gao, D. Energy-related CO2 emissions and structural emissions’ reduction in China’s agriculture: An input–output perspective. J. Clean. Prod. 2020, 276, 124169. [Google Scholar] [CrossRef]
- McCarl, B.A.; Spreen, T.H. Price endogenous mathematical programming as a tool for sector analysis. Am. J. Agric. Econ. 1980, 62, 87–102. [Google Scholar] [CrossRef] [Green Version]
- Norton, R.D.; Schiefer, G.W. Agricultural sector programming models: A review. Eur. Rev. Agric. Econ. 1980, 7, 229–265. [Google Scholar] [CrossRef]
- Norton, R.D.; Hazell, P.B. Mathematical programming for economic analysis in agriculture. Biometrics 1986, 43, 4. [Google Scholar]
- Spreen, T.H. Price endogenous mathematical programming models and trade analysis. J. Agric. Appl. Econ. 2006, 38, 249–253. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.; Önal, H. Modeling agricultural supply response using mathematical programming and crop mixes. Am. J. Agric. Econ. 2012, 94, 674–686. [Google Scholar] [CrossRef] [Green Version]
- Xu, J. A study on the Energy Use and Energy Efficiency of Grain Production-Empirical Analyse Based on Dea. Master’s Thesis, Zhejiang University, Hangzhou, China, 2012. [Google Scholar]
- Li, Z. Effect of Energy Use on Production and Income: Evidence from Potato Production Area of Northern China. Ph.D. Thesis, Chinese Academy of Agriculture Science, Beijing, China, 2016. [Google Scholar]
- NBS. China Statistical Yearbook [EB/OL]. Available online: http://www.stats.gov.cn/tjsj/tjcbw/201909/t20190924_1699095.html (accessed on 3 December 2021).
- Xue, P.; Zhang, W. Change of grain consumption in Jiangsu Province and its contribution index to China’s grain security. Res. Agric. Mod. 2019, 40, 206–214. [Google Scholar]
- Wang, G.; Shi, Q.; Qian, L. Can minimum purchase and price subsidy policy improve farmers’ welfare effect? Estimation of panel data based on 1996–2016 in 5 provinces of major producing areas. Issues Agric. Econ. 2019, 10, 63–73. [Google Scholar]
- Miao, S.; Lu, Q. China rice situation of supply and demand: Based on inventory and consumption observation. Reform 2011, 7, 51–56. [Google Scholar]
- Fan, S.; Shi, J. Supply response for maize in Shandong province based on Nerlove model. J. Anhui Agric. Sci. 2013, 41, 1762–1764. [Google Scholar]
- National Development and Reform Commission. National Agricultural Cost-benefit Data Compilation [EB/OL]. Available online: http://www.stats.gov.cn/tjsj/tjcbw/202008/t20200824_1785455.html (accessed on 3 December 2021).
- Editorial Board. The Manual of Agricultural Technology Economics (Revised Edition); China Agriculture Press: Beijing, China, 1985. [Google Scholar]
- IPCC. Climate Change: The Physical Science Basis; Cambridge University Press: Cambridge. UK, 2007; pp. 1–996. [Google Scholar]
- West, T.; Marland, G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: Comparing tillage practices in the United States. Agric. Ecosyst. Environ. 2002, 91, 217–232. [Google Scholar] [CrossRef]
- Nelson, R.; Hellwinckel, C.; Brandt, C.; Tristram, O.W.; Daniel, G.D.L.T.U.; Gregg, M. Energy use and carbon dioxide emissions from cropland production in the United States, 1990–2004. J. Environ. Qual. 2009, 38, 418. [Google Scholar] [CrossRef] [PubMed]
- Cheng, K.; Pan, G.; Smith, P.; Luo, T.; Li, L.; Zheng, J.; Zhang, X.; Han, X.; Yan, M. Carbon footprint of China’s crop production—an estimation using agro-statistics data over 1993–2007. Agric. Ecosyst. Environ. 2011, 142, 231–237. [Google Scholar] [CrossRef]
- Gao, Z. The Study on the Influence of the Energy Price Fluctuation on the National Economy based on CGE Model. Ph.D. Thesis, China University of Mining and Technology, Beijing, China, 2015. [Google Scholar]
- Wang, Y.; Wang, N.; Wu, M. The impacts of energy price fluctuations on China’s agriculture and rural economic development. Adv. Mater. Res. 2012, 524, 3216–3219. [Google Scholar]
- Ferguson, C. The Neoclassical Theory of Production and Distribution; Cambridge University Press: Cambridge, UK, 1969. [Google Scholar]
- Marshall, K.; Riche, S.; Seeley, R.; Westcott, P. Effects of Recent Energy Price Reductions on US Agriculture. United States Department of Agriculture, Economic Research Service. 2015. Available online: https://www.ers.usda.gov/publications/pub-details/?pubid=35833 (accessed on 3 December 2021).
- Rajcaniova, M.; Kancs, D.; Ciaian, P. Bioenergy and global land-use change. Appl. Econ. 2014, 26, 3163–3179. [Google Scholar] [CrossRef] [Green Version]
- Diermeier, M.; Schmidt, T. Oil price effects on land use competition–an empirical analysis. Ruhr Econ. Pap. 2012, 340, 24. [Google Scholar] [CrossRef] [Green Version]
- Piroli, G.; Ciaian, P.; Kancs, D. Land use change impacts of biofuels: Near-VAR: Evidence from the US. Ecol. Econ. 2012, 84, 98–109. [Google Scholar] [CrossRef] [Green Version]
- Wesseler, J.; Drabik, D. Prices matter: Analysis of food and energy competition relative to land resources in the European Union. NJAS-Wagening. J. Life Sci. 2016, 3, 19–24. [Google Scholar] [CrossRef]
- Howitt, R. Positive mathematical programming. Am. J. Agric. Econ. 1995, 77, 329–342. [Google Scholar] [CrossRef]
Energy Types | Standard Coal Conversion Coefficients | Carbon Emission Coefficients |
---|---|---|
Diesel | 1.457 kgce·kg−1 | 3.160 kgc·kg−1 |
Electricity | 0.123 kgce·kwh−1 | 0.703 kgc·kwh−1 |
Fertilizer | 0.821 kgce·kg−1 | 0.896 kgc·kg−1 |
Pesticide | 3.429 kgce·kg−1 | 4.934 kgc·kg−1 |
Agro-film | 1.600 kgce·kg−1 | 5.181 kgc·kg−1 |
Acreage (Million hm2) | Output (Million Tons) | Price (CHY/kg) | |||||||
---|---|---|---|---|---|---|---|---|---|
Obs. | Cal. | Dev. | Obs. | Cal. | Dev. | Obs. | Cal. | Dev. | |
Rice | 30.19 | 30.11 | −0.26% | 212.13 | 212.13 | 0.00% | 2.59 | 2.59 | 0.00% |
Wheat | 24.27 | 24.11 | −0.65% | 131.44 | 131.44 | 0.00% | 2.22 | 2.22 | 0.00% |
Corn | 42.13 | 42.13 | 0.01% | 257.18 | 257.18 | 0.00% | 1.75 | 1.75 | 0.00% |
Soybeen | 8.41 | 8.15 | −3.12% | 15.97 | 15.97 | 0.00% | 3.84 | 3.84 | 0.00% |
Peanut | 4.65 | 4.68 | 1.10% | 17.33 | 17.99 | 3.78% | 5.70 | 5.92 | 3.79% |
Rapeseed | 6.55 | 6.35 | −3.05% | 13.28 | 13.45 | 1.30% | 5.23 | 5.28 | 0.96% |
Potato | 4.94 | 4.71 | −4.64% | 18.71 | 18.71 | 0.00% | 1.56 | 1.56 | 0.00% |
Baseline | Scenario Ⅰ | Scenario Ⅱ | Scenario Ⅲ | Scenario Ⅳ | |
---|---|---|---|---|---|
Wheat | 24.11 | 24 | 23.89 | 24.22 | 24.36 |
−0.46% | −0.91% | −0.46% | −1.06% | ||
Rice | 30.11 | 29.97 | 29.83 | 30.25 | 30.39 |
−0.46% | −0.92% | −0.46% | −0.93% | ||
Corn | 42.13 | 41.9 | 41.67 | 42.37 | 42.65 |
−0.55% | −1.09% | −0.57% | −1.24% | ||
Soybean | 8.15 | 8.11 | 8.07 | 8.19 | 8.2 |
−0.49% | −0.99% | −0.5% | −0.62% | ||
Peanut | 4.68 | 4.66 | 4.63 | 4.7 | 4.72 |
−0.44% | −0.87% | −0.45% | −0.92% | ||
Rapeseed | 6.35 | 6.35 | 6.35 | 6.35 | 6.35 |
0% | 0% | 0% | 0% | ||
Potato | 4.71 | 4.69 | 4.68 | 4.73 | 4.75 |
−0.37% | −0.73% | −0.37% | −0.74% | ||
Total | 120.24 | 119.68 | 119.11 | 120.81 | 121.42 |
−0.46% | −0.92% | −0.47% | −0.99% |
Baseline | Scenario Ⅰ | Scenario Ⅱ | Scenario Ⅲ | Scenario Ⅳ | |
---|---|---|---|---|---|
Total cost (billion CHY) | 1 967.2 | 1 948.8 | 1 929.7 | 1 985.1 | 2 002.7 |
−0.93% | −1.91% | 0.91% | 1.80% | ||
Welfare (billion CHY) | 2 593.7 | 2 611.4 | 2 629.9 | 2 576.4 | 2 559.5 |
0.69% | 1.40% | −0.66% | −1.32% |
Baseline | Scenario Ⅰ | Scenario Ⅱ | Scenario Ⅲ | Scenario Ⅳ | ||||||
---|---|---|---|---|---|---|---|---|---|---|
En. Con | Car.Emi | En. Con | Car.Emi | En. Con | Car.Emi | En. Con | Car.Emi | En. Con | Car.Emi | |
Wheat | 1336.25 | 3572.34 | 1353.34 | 3599.18 | 1370.19 | 3625.50 | 1318.96 | 3545.09 | 1300.16 | 3507.93 |
1.28% | 0.75% | 2.54% | 1.49% | −1.29% | −0.76% | −2.70% | −1.80% | |||
Rice | 1698.74 | 3818.43 | 1730.10 | 3877.49 | 1761.06 | 3935.65 | 1667.00 | 3758.56 | 1634.89 | 3697.88 |
1.85% | 1.55% | 3.67% | 3.07% | −1.87% | −1.57% | −3.76% | −3.16% | |||
Corn | 1879.09 | 4690.94 | 1907.55 | 4755.14 | 1935.71 | 4818.80 | 1850.24 | 4625.85 | 1820.41 | 4558.28 |
1.51% | 1.37% | 3.01% | 2.73% | −1.54% | −1.39% | −3.12% | −2.83% | |||
Soybean | 156.44 | 374.88 | 159.39 | 380.97 | 162.29 | 386.96 | 153.44 | 368.69 | 148.26 | 357.10 |
1.89% | 1.63% | 3.74% | 3.22% | −1.92% | −1.65% | −5.23% | −4.74% | |||
Peanut | 164.59 | 384.88 | 167.16 | 390.27 | 169.74 | 395.69 | 162.00 | 379.46 | 159.39 | 374.00 |
1.56% | 1.40% | 3.13% | 2.81% | −1.57% | −1.41% | −3.16% | −2.83% | |||
Rapeseed | 167.15 | 314.77 | 170.97 | 322.45 | 174.49 | 329.56 | 163.32 | 307.09 | 159.49 | 299.41 |
2.29% | 2.44% | 4.39% | 4.70% | −2.29% | −2.44% | −4.58% | −4.88% | |||
Potato | 233.03 | 555.04 | 236.46 | 562.18 | 239.87 | 569.26 | 229.57 | 547.85 | 226.08 | 540.59 |
1.47% | 1.29% | 2.93% | 2.56% | −1.49% | −1.30% | −2.98% | −2.60% | |||
Total | 5635.28 | 13,711.28 | 5724.97 | 13,887.69 | 5813.35 | 14,061.41 | 5544.52 | 13,532.58 | 5448.68 | 13,335.18 |
1.59% | 1.29% | 3.16% | 2.55% | −1.61% | −1.30% | −3.31% | −2.74% |
Baseline | Scenario Ⅰ | Scenario Ⅱ | Scenario Ⅲ | Scenario Ⅳ | ||||||
---|---|---|---|---|---|---|---|---|---|---|
En. Con | Car.Emi | En. Con | Car.Emi | En. Con | Car.Emi | En. Con | Car.Emi | En. Con | Car.Emi | |
East China | 1527.21 | 3579.64 | 1559.86 | 3648.41 | 1592.21 | 3716.61 | 1494.56 | 3510.87 | 1463.13 | 3444.61 |
2.14% | 1.92% | 4.26% | 3.83% | −2.14% | −1.92% | −4.20% | −3.77% | |||
North | 874.76 | 2594.70 | 890.54 | 2630.12 | 906.32 | 2665.55 | 858.98 | 2559.27 | 843.20 | 2523.84 |
1.80% | 1.37% | 3.61% | 2.73% | −1.80% | −1.37% | −3.61% | −2.73% | |||
South-West | 462.65 | 861.94 | 462.91 | 864.42 | 462.88 | 866.35 | 461.98 | 858.57 | 460.35 | 852.72 |
0.06% | 0.29% | 0.05% | 0.51% | −0.14% | −0.39% | −0.50% | −1.07% | |||
North-West | 524.56 | 1559.23 | 524.65 | 1549.86 | 524.48 | 1539.93 | 524.28 | 1568.18 | 518.89 | 1560.23 |
0.02% | −0.60% | −0.01% | −1.24% | −0.05% | 0.57% | −1.08% | 0.06% | |||
South | 258.93 | 511.84 | 265.36 | 525.08 | 271.79 | 538.32 | 252.49 | 498.59 | 246.06 | 485.35 |
2.48% | 2.59% | 4.97% | 5.17% | −2.48% | −2.59% | −4.97% | −5.17% | |||
Central | 1039.02 | 2261.27 | 1063.40 | 2312.34 | 1087.78 | 2363.41 | 1014.63 | 2210.20 | 992.68 | 2163.77 |
2.35% | 2.26% | 4.69% | 4.52% | −2.35% | −2.26% | −4.46% | −4.31% | |||
North- East | 948.16 | 2342.66 | 958.26 | 2357.46 | 967.89 | 2371.24 | 937.60 | 2326.88 | 924.36 | 2304.67 |
1.07% | 0.63% | 2.08% | 1.22% | −1.11% | −0.67% | −2.51% | −1.62% | |||
China | 5635.28 | 13,711.28 | 5724.97 | 13,887.69 | 5813.35 | 14,061.41 | 5544.52 | 13,532.58 | 5448.68 | 13,335.18 |
Nationwide | 1.59% | 1.29% | 3.16% | 2.55% | −1.61% | −1.30% | −3.31% | −2.74% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Zhang, L.; Song, S.; Yu, S. Impacts of Energy Price on Agricultural Production, Energy Consumption, and Carbon Emission in China: A Price Endogenous Partial Equilibrium Model Analysis. Sustainability 2022, 14, 3002. https://doi.org/10.3390/su14053002
Ma Y, Zhang L, Song S, Yu S. Impacts of Energy Price on Agricultural Production, Energy Consumption, and Carbon Emission in China: A Price Endogenous Partial Equilibrium Model Analysis. Sustainability. 2022; 14(5):3002. https://doi.org/10.3390/su14053002
Chicago/Turabian StyleMa, Yongxi, Lu Zhang, Shixiong Song, and Shuao Yu. 2022. "Impacts of Energy Price on Agricultural Production, Energy Consumption, and Carbon Emission in China: A Price Endogenous Partial Equilibrium Model Analysis" Sustainability 14, no. 5: 3002. https://doi.org/10.3390/su14053002
APA StyleMa, Y., Zhang, L., Song, S., & Yu, S. (2022). Impacts of Energy Price on Agricultural Production, Energy Consumption, and Carbon Emission in China: A Price Endogenous Partial Equilibrium Model Analysis. Sustainability, 14(5), 3002. https://doi.org/10.3390/su14053002