Abstract
Accurate tumor segmentation plays an important role in radiosurgery planning and the assessment of radiotherapy treatment efficacy. In this paper we propose a method combining an ensemble of 2D convolutional neural networks for doing a volumetric segmentation of magnetic resonance images. The segmentation is done in three steps; first the full tumor region, is segmented from the background by a voxel-wise merging of the decisions of three networks learned from three orthogonal planes, next the segmentation is refined using a cellular automaton-based seed growing method known as growcut. Finally, within-tumor sub-regions are segmented using an additional ensemble of networks trained for the task. We demonstrate the method on the MICCAI Brain Tumor Segmentation Challenge dataset of 2014, and show improved segmentation accuracy compared to an axially trained 2D network and an ensemble segmentation without growcut. We further obtain competitive Dice scores compared with the most recent tumor segmentation challenge.
Chapter PDF
Similar content being viewed by others
References
Bergstra, J., et al.: Theano: a CPU and GPU math expression compiler. In: Python for Scientific Computing Conference (SciPy) (2010)
Cordier, N., Menze, B., Delingette, H., Ayache, N.: Patch-based segmentation of brain tissues. In: MICCAI-BraTS (Challenge on Multimodal Brain Tumor Segmentation), pp. 6–17 (2013)
Davy, A., Havaei, M., Warde-Farley, D., Biard, A., Tran, L., Jodoin, P.M., Courville, A., Larochelle, H., Pal, C., Bengio, Y.: Brain tumor segmentation with deep neural networks. In: MICCAI-BraTS, pp. 1–5 (2014)
Dice, L.R.: Measures of the amount of ecologic association between species. Ecology (1945)
Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Improving neural networks by preventing co-adaptation of feature detectors. CoRR (2012)
Jakab, A.: Segmenting brain tumors with the slicer 3d software. Tech. rep., University of Debrecen / ETH Zürich (2012)
Kleesiek, J., Biller, A., Urban, G., Kothe, U., Bendszus, M., Hamprecht, F.: Ilastik for multi-modal brain tumor segmentation. In: MICCAI-BraTS, pp. 12–17 (2014)
Kwon, D., Akbari, H., Da, X., Gaonkar, B., Davatzikos, C.: Multimodal brain tumor image segmentation using glistr. In: MICCAI-BraTS, pp. 18–19 (2014)
Menze, B., Geremia, E., Ayache, N., Szekely, G.: Segmenting glioma in multimodal images using a generative-discriminative model for brain lesion segmentation. In: MICCAI-BraTS, pp. 56–63 (2012)
Menze, B., Leemput, K.V., Lashkar, D., Weber, M., Ayache, N., Golland, P.: Segmenting glioma in multi-modal images using a generative model for brain lesion segmentation, pp. 49–55 (2012)
Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Transactions on Medical Imaging (2014)
Reza, S., Iftekharuddin, K.: Improved brain tumor tissue segmentation using texture features. In: MICCAI-BraTS, pp. 27–30 (2014)
Sutskever, I., Martens, J., Dahl, G.E., Hinton, G.E.: On the importance of initialization and momentum in deep learning. In: 30th International Conference on Machine Learning (ICML 2013), vol. 28, pp. 1139–1147, May 2013
Tustison, N.J., Avants, B.B., Cook, P.A., Zheng, Y., Egan, A., Yushkevich, P.A., Gee, J.C.: N4ITK: Improved N3 Bias Correction. IEEE Trans. Med. Imaging 29(6), 1310–1320 (2010)
Tustison, N., Wintermark, M., Durst, C., Avants, B.: Ants and arboles. In: MICCAI-BraTS, pp. 47–50 (2013)
Urban, G., Bendszus, M., Hamprecht, F.A., Kleesiek, J.: Multi-modal brain tumor segmentation using deep convolutional neural networks. In: MICCAI-BraTSs, pp. 31–35 (2014)
Vezhnevets, V., Konouchine, V.: GrowCut - interactive multi-label n-d image segmentation by cellular automata. In: Proceedings of Graphicon (2005)
Zikic, D., Ioannou, Y., Brown, M., Criminisi, A.: Segmentation of brain tumor tissues with convolutional neural networks. In: MICCAI-BraTS, pp. 36–39 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2015 Springer International Publishing Switzerland
About this paper
Cite this paper
Lyksborg, M., Puonti, O., Agn, M., Larsen, R. (2015). An Ensemble of 2D Convolutional Neural Networks for Tumor Segmentation. In: Paulsen, R., Pedersen, K. (eds) Image Analysis. SCIA 2015. Lecture Notes in Computer Science(), vol 9127. Springer, Cham. https://doi.org/10.1007/978-3-319-19665-7_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-19665-7_17
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-19664-0
Online ISBN: 978-3-319-19665-7
eBook Packages: Computer ScienceComputer Science (R0)