Abstract
Medical image segmentation is the task of objective segmentation in medical field. 3D Tumor segmentation can help physicians efficiently diagnose cancer, track tumor change, and make treatment plans. With the development of machine learning (ML)/Deep Learning (DL) image segmentation methods, the performance of medical image segmentation has significantly improved especially in terms of accuracy and time efficiency. Performance of typical deep learning algorithms such as Fully Connection Networks, Unet, DeepLab varies with respect to different datasets, pre-processing and training parameter settings. In this paper, we propose a new architecture which utilizes the advantages of various models and aggregates their results. The original concept was inspired by Ensembles of Multiple Models and Architectures. In this paper, we train different sub-models separately. Then we train a gating network to credit the inference result from each individual model to get a better result.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdulbaqi, H.S., Jafri, M.Z.M., Omar, A.F., Mutter, K.N., Abood, L.K., Mustafa, I.S.B.: Segmentation and estimation of brain tumor volume in computed tomography scan images using hidden markov random field expectation maximization algorithm. In: 2015 IEEE Student Conference on Research and Development (SCOReD), pp. 55–60. IEEE (2015)
Angulakshmi, M., Lakshmi Priya, G.: Automated brain tumour segmentation techniques–a review. Int. J. Imaging Syst. Technol. 27(1), 66–77 (2017)
Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473 (2014)
Baid, U., et al.: The rsna-asnr-miccai brats 2021 benchmark on brain tumor segmentation and radiogenomic classification. arXiv preprint arXiv:2107.02314 (2021)
Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the tcga-gbm collection. the cancer imaging archive. Nat. Sci. Data 4, 170117 (2017)
Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the tcga-lgg collection. The cancer imaging archive 286 (2017)
Bakas, S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Sci. Data 4(1), 1–13 (2017)
Bauer, S., Seiler, C., Bardyn, T., Buechler, P., Reyes, M.: Atlas-based segmentation of brain tumor images using a markov random field-based tumor growth model and non-rigid registration. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology, pp. 4080–4083. IEEE (2010)
Bousselham, A., Bouattane, O., Youssfi, M., Raihani, A.: Towards reinforced brain tumor segmentation on MRI images based on temperature changes on pathologic area. Int. J. Biomed. Imaging 2019 (2019)
Cao, H., et al.: Swin-unet: Unet-like pure transformer for medical image segmentation. arXiv preprint arXiv:2105.05537 (2021)
Chang, J., Zhang, X., Ye, M., Huang, D., Wang, P., Yao, C.: Brain tumor segmentation based on 3d unet with multi-class focal loss. In: 2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), pp. 1–5. IEEE (2018)
Chen, J., et al.: Transunet: Transformers make strong encoders for medical image segmentation. arXiv preprint arXiv:2102.04306 (2021)
Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49
Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Isensee, F., Kickingereder, P., Wick, W., Bendszus, M., Maier-Hein, K.H.: No new-net. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 234–244. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_21
Kamnitsas, K., et al.: Ensembles of multiple models and architectures for robust brain tumour segmentation. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 450–462. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_38
Kamnitsas, K., et al.: Deepmedic for brain tumor segmentation. In: Crimi, A., Menze, B., Maier, O., Reyes, M., Winzeck, S., Handels, H. (eds.) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2016. Lecture Notes in Computer Science(), vol. 10154, pp. 138–149. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-55524-9_14
Lee, K., Zung, J., Li, P., Jain, V., Seung, H.S.: Superhuman accuracy on the snemi3d connectomics challenge. arXiv preprint arXiv:1706.00120 (2017)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)
Mathur, N., Mathur, S., Mathur, D.: A novel approach to improve sobel edge detector. Procedia Comput. Sci. 93, 431–438 (2016)
Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)
Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural networks for volumetric medical image segmentation. In: 2016 fourth International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)
Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28
Qamar, S., Jin, H., Zheng, R., Ahmad, P., Usama, M.: A variant form of 3d-unet for infant brain segmentation. Future Gener. Comput. Syst. 108, 613–623 (2020)
Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)
Wang, G., Li, W., Ourselin, S., Vercauteren, T.: Automatic brain tumor segmentation using cascaded anisotropic convolutional neural networks. In: Crimi, A., Bakas, S., Kuijf, H., Menze, B., Reyes, M. (eds.) BrainLes 2017. LNCS, vol. 10670, pp. 178–190. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75238-9_16
Wang, W., Chen, C., Ding, M., Li, J., Yu, H., Zha, S.: Transbts: multimodal brain tumor segmentation using transformer. arXiv preprint arXiv:2103.04430 (2021)
Wolny, A., et al.: Accurate and versatile 3d segmentation of plant tissues at cellular resolution. eLife 9 (2020). https://doi.org/10.7554/elife.57613
Zhang, Z., Liu, Q., Wang, Y.: Road extraction by deep residual u-net. IEEE Geosci. Remote Sens. Lett. 15(5), 749–753 (2018)
Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested u-net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1
Acknowledgment
This work was performed under the Grant 2015254 and gift by the National Science Foundation and Konica Minolta, respectively. We also acknowledge support from the University of Texas at Anderson Cancer Center, Texas Advanced Computing Center, and Oden Institute for Computational and Engineering Sciences initiative in Oncological Data and Computational Science.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Shi, Y., Micklisch, C., Mushtaq, E., Avestimehr, S., Yan, Y., Zhang, X. (2022). An Ensemble Approach to Automatic Brain Tumor Segmentation. In: Crimi, A., Bakas, S. (eds) Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2021. Lecture Notes in Computer Science, vol 12963. Springer, Cham. https://doi.org/10.1007/978-3-031-09002-8_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-09002-8_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-09001-1
Online ISBN: 978-3-031-09002-8
eBook Packages: Computer ScienceComputer Science (R0)