Abstract
Scalable handling of real arithmetic is a crucial part of the verification of hybrid systems, mathematical algorithms, and mixed analog/digital circuits. Despite substantial advances in verification technology, complexity issues with classical decision procedures are still a major obstacle for formal verification of real-world applications, e.g., in automotive and avionic industries. To identify strengths and weaknesses, we examine state of the art symbolic techniques and implementations for the universal fragment of real-closed fields: approaches based on quantifier elimination, Gröbner Bases, and semidefinite programming for the Positivstellensatz. Within a uniform context of the verification tool KeYmaera, we compare these approaches qualitatively and quantitatively on verification benchmarks from hybrid systems, textbook algorithms, and on geometric problems. Finally, we introduce a new decision procedure combining Gröbner Bases and semidefinite programming for the real Nullstellensatz that outperforms the individual approaches on an interesting set of problems.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2nd edn. University of California Press, Berkeley (1951)
Ratschan, S.: Efficient solving of quantified inequality constraints over the real numbers. ACM Trans. Comput. Log. 7, 723–748 (2006)
Collins, G.E., Hong, H.: Partial cylindrical algebraic decomposition for quantifier elimination. J. Symb. Comput. 12, 299–328 (1991)
Weispfenning, V.: Quantifier elimination for real algebra - the quadratic case and beyond. Appl. Algebra Eng. Commun. Comput. 8, 85–101 (1997)
Buchberger, B.: An Algorithm for Finding the Basis Elements of the Residue Class Ring of a Zero Dimensional Polynomial Ideal. PhD thesis, University of Innsbruck (1965)
Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems. Math. Program. 96, 293–320 (2003)
Stengle, G.: A Nullstellensatz and a Positivstellensatz in semialgebraic geometry. Math. Ann. 207, 87–97 (1973)
Platzer, A., Quesel, J.D.: KeYmaera: A hybrid theorem prover for hybrid systems. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS, vol. 5195, pp. 171–178. Springer, Heidelberg (2008)
Brown, C.W.: QEPCAD B: A program for computing with semi-algebraic sets using CADs. SIGSAM Bull. 37, 97–108 (2003)
Dolzmann, A., Sturm, T.: Redlog: Computer algebra meets computer logic. ACM SIGSAM Bull. 31, 2–9 (1997)
McLaughlin, S., Harrison, J.: A proof-producing decision procedure for real arithmetic. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS, vol. 3632, pp. 295–314. Springer, Heidelberg (2005)
Borchers, B.: CSDP, a C library for semidefinite programming. Optimization Methods and Software 11, 613–623 (1999)
Harrison, J.: Verifying nonlinear real formulas via sums of squares. In: Schneider, K., Brandt, J. (eds.) TPHOLs 2007. LNCS, vol. 4732, pp. 102–118. Springer, Heidelberg (2007)
Platzer, A.: Differential dynamic logic for hybrid systems. J. Autom. Reasoning 41, 143–189 (2008)
Beckert, B., Hähnle, R., Schmitt, P.H. (eds.): Verification of Object-Oriented Software: The KeY Approach. LNCS, vol. 4334. Springer, Heidelberg (2007)
Platzer, A., Quesel, J.D., Rümmer, P.: Real world verification. Reports of SFB/TR 14 AVACS 52, SFB/TR 14 AVACS (2009) ISSN: 1860-9821, http://www.avacs.org
Rümmer, P.: A sequent calculus for integer arithmetic with counterexample generation. In: Beckert, B. (ed.) VERIFY 2007 at CADE, Bremen, Germany. CEUR-WS.org, vol. 259 (2007)
Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Chichester (1986)
Platzer, A.: Combining deduction and algebraic constraints for hybrid system analysis. In: Beckert, B. (ed.) VERIFY 2007 at CADE, Bremen, Germany. CEUR Workshop Proceedings, vol. 259, pp. 164–178. CEUR-WS.org (2007)
Davenport, J.H., Heintz, J.: Real quantifier elimination is doubly exponential. J. Symb. Comput. 5, 29–35 (1988)
Strzebonski, A.W.: Cylindrical algebraic decomposition using validated numerics. J. Symb. Comput. 41, 1021–1038 (2006)
Bochnak, J., Coste, M., Roy, M.F.: Real Algebraic Geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 36. Springer, Heidelberg (1998)
Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge Univ. Press, Cambridge (2004)
Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A Foundation for Computer Science. Addison-Wesley Longman, Amsterdam (1994)
Platzer, A., Quesel, J.D.: Logical verification and systematic parametric analysis in train control. In: Egerstedt, M., Mishra, B. (eds.) HSCC 2008. LNCS, vol. 4981, pp. 646–649. Springer, Heidelberg (2008)
Kovács, L.: Aligator: A mathematica package for invariant generation (system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS, vol. 5195, pp. 275–282. Springer, Heidelberg (2008)
de Moura, L.M., Bjørner, N.: Z3: An efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008)
Dolzmann, A., Sturm, T., Weispfenning, V.: A new approach for automatic theorem proving in real geometry. J. Autom. Reason. 21, 357–380 (1998)
Nipkow, T.: Linear quantifier elimination. In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS, vol. 5195, pp. 18–33. Springer, Heidelberg (2008)
Tiwari, A.: An algebraic approach for the unsatisfiability of nonlinear constraints. In: Ong, C.H.L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 248–262. Springer, Heidelberg (2005)
Akbarpour, B., Paulson, L.C.: Extending a resolution prover for inequalities on elementary functions. In: Dershowitz, N., Voronkov, A. (eds.) LPAR 2007. LNCS, vol. 4790, pp. 47–61. Springer, Heidelberg (2007)
Warren, A., Hunt, J., Krug, R.B., Moore, J.S.: Linear and nonlinear arithmetic in ACL2. In: Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp. 319–333. Springer, Heidelberg (2003)
Platzer, A., Clarke, E.M.: Computing differential invariants of hybrid systems as fixedpoints. In: Gupta, A., Malik, S. (eds.) CAV 2008. LNCS, vol. 5123, pp. 176–189. Springer, Heidelberg (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Platzer, A., Quesel, JD., Rümmer, P. (2009). Real World Verification. In: Schmidt, R.A. (eds) Automated Deduction – CADE-22. CADE 2009. Lecture Notes in Computer Science(), vol 5663. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02959-2_35
Download citation
DOI: https://doi.org/10.1007/978-3-642-02959-2_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02958-5
Online ISBN: 978-3-642-02959-2
eBook Packages: Computer ScienceComputer Science (R0)