Abstract
Experiments show that many inequalities involving exponentials and logarithms can be proved automatically by combining a resolution theorem prover with a decision procedure for the theory of real closed fields (RCF). The method should be applicable to any functions for which polynomial upper and lower bounds are known. Most bounds only hold for specific argument ranges, but resolution can automatically perform the necessary case analyses. The system consists of a superposition prover (Metis) combined with John Harrison’s RCF solver and a small amount of code to simplify literals with respect to the RCF theory.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Akbarpour, B., Paulson, L.C.: Towards automatic proofs of inequalities involving elementary functions. In: Cook, B., Sebastiani, R. (eds.) PDPAR: Pragmatics of Decision Procedures in Automated Reasoning, pp. 27–37 (2006)
Avigad, J., Donnelly, K., Gray, D., Raff, P.: A formally verified proof of the prime number theorem. ACM Transactions on Computational Logic (in press)
Avigad, J., Friedman, H.: Combining decision procedures for the reals. Logical Methods in Computer Science 2(4) (2006)
Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, A., Voronkov, A. (eds.) Handbook of Automated Reasoning, vol. I, ch. 2, pp. 19–99. Elsevier Science, Amsterdam (2001)
Barwise, J.: An introduction to first-order logic. In: Barwise, J. (ed.) Handbook of Mathematical Logic, pp. 5–46. North-Holland, Amsterdam (1977)
Beeson, M.: Automatic generation of a proof of the irrationality of e. JSC 32(4), 333–349 (2001)
Brown, C.W.: QEPCAD B: a program for computing with semi-algebraic sets using CADs. SIGSAM Bulletin 37(4), 97–108 (2003)
Clarke, E., Zhao, X.: Analytica: A theorem prover for Mathematica. Mathematica Journal 3(1), 56–71 (1993)
Dolzmann, A., Sturm, T., Weispfenning, V.: Real quantifier elimination in practice. Technical Report MIP-9720, Universität Passau, D-94030, Germany (1997)
Flanagan, C., Joshi, R., Ou, X., Saxe, J.B.: Theorem proving using lazy proof explication. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp. 355–367. Springer, Heidelberg (2003)
Grégoire, B., Mahboubi, A.: Proving equalities in a commutative ring done right in coq. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 98–113. Springer, Heidelberg (2005)
Hörmander, L.: The Analysis of Linear Partial Differential Operators II: Differential Operators with Constant Coefficient. Springer, Heidelberg (2006) First published in 1983; cited by Mclaughlin and Harrison [15]
Hurd, J.: Metis first order prover (2007), http://gilith.com/software/metis/
McCune, W., Wos, L.: Otter: The CADE-13 competition incarnations. Journal of Automated Reasoning 18(2), 211–220 (1997)
McLaughlin, S., Harrison, J.: A proof-producing decision procedure for real arithmetic. In: Nieuwenhuis, R. (ed.) CADE-20. LNCS (LNAI), vol. 3632, pp. 295–314. Springer, Heidelberg (2005)
Nipkow, T., Paulson, L.C., Wenzel, M. (eds.): Isabelle/HOL. LNCS, vol. 2283. Springer, Heidelberg (2002)
Prevosto, V., Waldmann, U.: SPASS+T. In: Sutcliffe, G., Schmidt, R., Schulz, S.: (eds.) FLoC 2006 Workshop on Empirically Successful Computerized Reasoning, vol. 192 of CEUR Workshop Proceedings, pp. 18–33 (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Akbarpour, B., Paulson, L.C. (2007). Extending a Resolution Prover for Inequalities on Elementary Functions. In: Dershowitz, N., Voronkov, A. (eds) Logic for Programming, Artificial Intelligence, and Reasoning. LPAR 2007. Lecture Notes in Computer Science(), vol 4790. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75560-9_6
Download citation
DOI: https://doi.org/10.1007/978-3-540-75560-9_6
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-75558-6
Online ISBN: 978-3-540-75560-9
eBook Packages: Computer ScienceComputer Science (R0)