Abstract
The U-Net architecture [1] is a state-of-the-art neural network for semantic image segmentation that is widely used in biomedical research. It is based on an encoder-decoder framework and its vanilla version shows already high performance in terms of segmentation quality. Due to its large parameter space, however, it has high computational costs on both, CPUs and GPUs. In a research setting, inference time is relevant, but not crucial for the results.
Chapter PDF
Similar content being viewed by others
References
Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for biomedical image segmentation. Proc MICCAI. 2015; p. 234–241.
Gómez P, Kist AM, Schlegel P, et al. BAGLS, a multihospital benchmark for automatic glottis segmentation. Scientific data. 2020;7(1):112.
Kist AM, Döllinger M. Efficient biomedical image segmentation on edgeTPUs at point of care. IEEE Access. 2020;8:139356–139366.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Der/die Autor(en), exklusiv lizenziert durch Springer Fachmedien Wiesbaden GmbH, ein Teil von Springer Nature
About this paper
Cite this paper
Kist, A.M., Döllinger, M. (2021). Abstract: Efficient Biomedical Image Segmentation on EdgeTPUs. In: Palm, C., Deserno, T.M., Handels, H., Maier, A., Maier-Hein, K., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2021. Informatik aktuell. Springer Vieweg, Wiesbaden. https://doi.org/10.1007/978-3-658-33198-6_44
Download citation
DOI: https://doi.org/10.1007/978-3-658-33198-6_44
Published:
Publisher Name: Springer Vieweg, Wiesbaden
Print ISBN: 978-3-658-33197-9
Online ISBN: 978-3-658-33198-6
eBook Packages: Computer Science and Engineering (German Language)