[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Predicting Phone Usage Behaviors with Sensory Data Using a Hierarchical Generative Model

  • Conference paper
  • First Online:
Trends and Applications in Knowledge Discovery and Data Mining (PAKDD 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9794))

Included in the following conference series:

Abstract

Using a sizable set of sensory data and related usage records on Android devices, we are able to give a reasonable prediction of three imporant aspects of phone usage: messages, phone calls and cellular data. We solve the problem via an estimation of a user’s daily routine, on which we can train a hierarchical generative model on phone usages in all time slots of a day. The model generates phone usage behaviors in terms of three kinds of data: the state of user-phone interaction, occurrence times of an activity and the duration of the activity in each occurrence. We apply the model on a dataset with 107 frequent users, and find the prediction error of generative model is the smallest when compare with several other baseline methods. In addition, CDF curves illustrate the availability of generative model for most users with the distribution of prediction error for all test cases. We also explore the effects of time slots in a day, as well as size of training and test sets. The results suggest several interesting directions for further research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cho, J., Garcia-Molina, H.: Estimating frequency of change. ACM Trans. Internet Technol. (TOIT) 3(3), 256–290 (2003)

    Article  Google Scholar 

  2. Do, T.M.T., Blom, J., Gatica-Perez, D.: Smartphone usage in the wild: a large-scale analysis of applications and context. In: ICMI, pp. 353–360. ACM (2011)

    Google Scholar 

  3. Eckmann, J., Moses, E., Sergi, D.: Entropy of dialogues creates coherent structures in e-mail traffic. Proc. Nat. Acad. Sci. USA 101(40), 14333–14337 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Falaki, H., Mahajan, R., Kandula, S., Lymberopoulos, D., Govindan, R., Estrin, D.: Diversity in smartphone usage. In: MobiSys, pp. 179–194. ACM (2010)

    Google Scholar 

  5. Farrahi, K., Gatica-Perez, D.: What did you do today?: discovering daily routines from large-scale mobile data. In: Proceedings of MM, pp. 849–852. ACM (2008)

    Google Scholar 

  6. Farrahi, K., Gatica-Perez, D.: Probabilistic mining of socio-geographic routines from mobile phone data. Sel. Top. Signal Process. 4(4), 746–755 (2010)

    Article  Google Scholar 

  7. Ferraz Costa, A., Yamaguchi, Y., Juci Machado Traina, A., Traina Jr., C., Faloutsos, C.: RSC: Mining and modeling temporal activity in social media. In: KDD, pp. 269–278. ACM (2015)

    Google Scholar 

  8. Hidalgo, R.C.A.: Conditions for the emergence of scaling in the inter-event time of uncorrelated and seasonal systems. Phys. A: Stat. Mech. Appl. 369(2), 877–883 (2006)

    Article  MathSciNet  Google Scholar 

  9. Hollmén, J., Tresp, V.: Call-based fraud detection in mobile communication networks using a hierarchical regime-switching model. In: Advances in Neural Information Processing Systems, pp. 889–895 (1999)

    Google Scholar 

  10. Jin, Y., et al.: Characterizing data usage patterns in a large cellular network. In: SIGCOMM Workshop on Cellular Networks, pp. 7–12. ACM (2012)

    Google Scholar 

  11. Juan, D.-C., Li, L., Peng, H.-K., Marculescu, D., Faloutsos, C.: Beyond poisson: modeling inter-arrival time of requests in a datacenter. In: Tseng, V.S., Ho, T.B., Zhou, Z.-H., Chen, A.L.P., Kao, H.-Y. (eds.) PAKDD 2014, Part II. LNCS, vol. 8444, pp. 198–209. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  12. Kang, J.M., Seo, S.S., Hong, J.W.K.: Usage pattern analysis of smartphones. In: Network Operations and Management Symposium, pp. 1–8. IEEE (2011)

    Google Scholar 

  13. Kleinberg, J.: Bursty and hierarchical structure in streams. Data Min. Knowl. Disc. 7(4), 373–397 (2003)

    Article  MathSciNet  Google Scholar 

  14. Liao, Z.X., Lei, P.R., Shen, T.J., Li, S.C., Peng, W.C.: Mining temporal profiles of mobile applications for usage prediction. In: ICDMW, pp. 890–893. IEEE (2012)

    Google Scholar 

  15. Liao, Z.X., Li, S.C., Peng, W.C., Yu, P.S., Liu, T.C.: On the feature discovery for app usage prediction in smartphones. In: ICDM, pp. 1127–1132. IEEE (2013)

    Google Scholar 

  16. Liao, Z.X., Pan, Y.C., Peng, W.C., Lei, P.R.: On mining mobile apps usage behavior for predicting apps usage in smartphones. In: CIKM, pp. 609–618. ACM (2013)

    Google Scholar 

  17. Malmgren, R.D., Hofman, J.M., Amaral, L.A., Watts, D.J.: Characterizing individual communication patterns. In: KDD, pp. 607–616. ACM (2009)

    Google Scholar 

  18. Malmgren, R.D., Stouffer, D.B., Motter, A.E., Amaral, L.A.: A poissonian explanation for heavy tails in e-mail communication. Proc. Nat. Acad. Sci. 105(47), 18153–18158 (2008)

    Article  Google Scholar 

  19. Vaz de Melo, P.O.S., Faloutsos, C., Assunção, R., Loureiro, A.: The self-feeding process: a unifying model for communication dynamics in the web. In: WWW, pp. 1319–1330 (2013)

    Google Scholar 

  20. Melo, P.O., Faloutsos, C., Assunçao, R., Alves, R., Loureiro, A.A.: Universal and distinct properties of communication dynamics: how to generate realistic inter-event times. TKDD 9(3), 24 (2015)

    Article  Google Scholar 

  21. Shin, C., Hong, J.H., Dey, A.K.: Understanding and prediction of mobile application usage for smart phones. In: Ubicomp, pp. 173–182. ACM (2012)

    Google Scholar 

  22. Sia, K.C., Cho, J., Cho, H.K.: Efficient monitoring algorithm for fast news alerts. IEEE Trans. Knowl. Data Eng. 19(7), 950–961 (2007)

    Article  Google Scholar 

  23. Verkasalo, H.: Analysis of smartphone user behavior. In: Mobile Business and 2010 Ninth Global Mobility Roundtable (ICMB-GMR), pp. 258–263. IEEE (2010)

    Google Scholar 

  24. Wagner, D.T., Rice, A., Beresford, A.R.: Device analyzer: large-scale mobile data collection. ACM SIGMETRICS Perform. Eval. Rev. 41(4), 53–56 (2014)

    Article  Google Scholar 

  25. Wagner, D.T., Rice, A., Beresford, A.R.: Device analyzer: understanding smartphone usage. In: Stojmenovic, I., Cheng, Z., Guo, S. (eds.) MOBIQUITOUS 2013. LNICST, vol. 131, pp. 195–208. Springer, Heidelberg (2014)

    Google Scholar 

  26. Xu, Y., et al.: Preference, context and communities: a multi-faceted approach to predicting smartphone app usage patterns. In: ISWC, pp. 69–76. ACM (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuankai An .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

An, C., Rockmore, D. (2016). Predicting Phone Usage Behaviors with Sensory Data Using a Hierarchical Generative Model. In: Cao, H., Li, J., Wang, R. (eds) Trends and Applications in Knowledge Discovery and Data Mining. PAKDD 2016. Lecture Notes in Computer Science(), vol 9794. Springer, Cham. https://doi.org/10.1007/978-3-319-42996-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42996-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42995-3

  • Online ISBN: 978-3-319-42996-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics