[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Beyond Poisson: Modeling Inter-Arrival Time of Requests in a Datacenter

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2014)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 8444))

Included in the following conference series:

Abstract

How frequently are computer jobs submitted to an industrial-scale datacenter? We investigate the trace that contains job requests and execution collected in one of large-scale industrial datacenters, which spans near half of a Terabyte. In this paper, we discover and explain two surprising patterns with respect to the inter-arrival time (IAT) of job requests: (a) multiple periodicities and (b) multi-level bundling effects. Specifically, we propose a novel generative process, Hierarchical Bundling Model (HiBM), for modeling the data. HiBM is able to mimic multiple components in the distribution of IAT, and to simulate job requests with the same statistical properties as in the real data. We also provide a systematic approach to estimate the parameters of HiBM.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bennett, S.: Log-logistic regression models for survival data. Applied Statistics, 165–171 (1983)

    Google Scholar 

  2. Benson, T., Anand, A., Akella, A., Zhang, M.: Understanding data center traffic characteristics. ACM SIGCOMM Computer Communication Review 40(1), 92–99 (2010)

    Article  Google Scholar 

  3. Casella, G., Berger, R.L.: Statistical inference, vol. 70. Duxbury Press, Belmont (1990)

    MATH  Google Scholar 

  4. Vaz de Melo, P.O.S., Akoglu, L., Faloutsos, C., Loureiro, A.A.F.: Surprising patterns for the call duration distribution of mobile phone users. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD 2010, Part III. LNCS, vol. 6323, pp. 354–369. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  5. Fischer, W., Meier-Hellstern, K.: The markov-modulated poisson process (mmpp) cookbook. Performance Evaluation 18(2), 149–171 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gokhale, S.S., Trivedi, K.S.: Log-logistic software reliability growth model. In: HASE, pp. 34–41. IEEE (1998)

    Google Scholar 

  7. Ihler, A., Hutchins, J., Smyth, P.: Adaptive event detection with time-varying poisson processes. In: KDD, pp. 207–216. ACM (2006)

    Google Scholar 

  8. Kleinberg, J.: Bursty and hierarchical structure in streams. Data Mining and Knowledge Discovery 7(4), 373–397 (2003)

    Article  MathSciNet  Google Scholar 

  9. Lawless, J.F.: Statistical models and methods for lifetime data, vol. 362. John Wiley & Sons (2011)

    Google Scholar 

  10. Leland, W.E., Taqqu, M.S., Willinger, W., Wilson, D.V.: On the self-similar nature of ethernet traffic. ACM SIGCOMM Computer Communication Review 23, 183–193 (1993)

    Article  Google Scholar 

  11. Massey Jr., F.J.: The kolmogorov-smirnov test for goodness of fit. JASA 46(253), 68–78 (1951)

    Article  MATH  Google Scholar 

  12. Reiss, C., Tumanov, A., Ganger, G.R., Katz, R.H., Kozuch, M.A.: Heterogeneity and dynamicity of clouds at scale: Google trace analysis. In: SOCC, p. 7. ACM (2012)

    Google Scholar 

  13. Saveski, M., Grčar, M.: Web services for stream mining: A stream-based active learning use case. ECML PKDD 2011, 36 (2011)

    Google Scholar 

  14. Wang, M., Madhyastha, T., Chan, N.H., Papadimitriou, S., Faloutsos, C.: Data mining meets performance evaluation: Fast algorithms for modeling bursty traffic. In: ICDE, pp. 507–516. IEEE (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Juan, DC., Li, L., Peng, HK., Marculescu, D., Faloutsos, C. (2014). Beyond Poisson: Modeling Inter-Arrival Time of Requests in a Datacenter. In: Tseng, V.S., Ho, T.B., Zhou, ZH., Chen, A.L.P., Kao, HY. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2014. Lecture Notes in Computer Science(), vol 8444. Springer, Cham. https://doi.org/10.1007/978-3-319-06605-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-06605-9_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-06604-2

  • Online ISBN: 978-3-319-06605-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics