[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Confidence Intervals for the Ratio of Coefficients of Variation in the Two-Parameter Exponential Distributions

  • Conference paper
  • First Online:
Integrated Uncertainty in Knowledge Modelling and Decision Making (IUKM 2016)

Abstract

Ratio of coefficients of variation is one of statistical measurements used in many fields of applied research. However, the problem in statistical inference of the ratio of coefficients of variation has been little studied. In this paper, two new confidence intervals for this measure in the two-parameter exponential distributions are introduced based on the method of variance of estimates recovery (MOVER) and the generalized confidence interval (GCI). We use Monte carlo simulation to conduct the performance of the estimators. The results indicate that the coverage probabilities of the confidence interval based on the MOVER and the GCI maintain the nominal coverage level. The GCI has shorter expected length than the MOVER in most cases. In addition, real-world data are analyzed to illustrate the findings of the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jati, K.: Staple food balance sheet, coefficient of variation, and price disparity in indonesia. J. Adv. Manage. Sci. 2, 65–71 (2014)

    Article  Google Scholar 

  2. Popadin, K.Y., Gutierrez, A.M., Lappalainen, T., Buil, A., Steinberg, J., Nikolaev, S.I., Lukowski, S.W., Bazykin, G.A., Seplyarskiy, V.B., Ioannidis, P., Zdobnov, E.M., Dermitzakis, E.T., Antonarakis, S.E.: Gene age predicts the strength of purifying selection acting on gene expression variation in humans. Am. J. Hum. Genet. 95, 660–674 (2014)

    Article  Google Scholar 

  3. DiGregorio, D.A., Nusser, Z., Silver, R.A.: Spillover of glutamate onto synaptic AMPA receptors enhances fast transmission at a cerebellar synapse. Neuron 35, 521–533 (2002)

    Article  Google Scholar 

  4. Shiina, K., Tomiyama, H., Takata, Y., Yoshida, M., Kato, K., Nishihata, Y., Matsumoto, C., Odaira, M., Saruhara, H., Hashimura, Y., Usui, Y., Yamashina, A.: Overlap syndrome: additive effects of COPD on the cardiovascular damages in patients with OSA. Respir. Med. 106, 1335–1341 (2012)

    Article  Google Scholar 

  5. Verrill, S., Johnson, R.A.: Confidence bounds and hypothesis tests for normal distribution coefficients of variation. Commun. Stat.-Theory Methodol. 36, 2187–2206 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Donner, A., Zou, G.Y.: Closed-form confidence intervals for functions of the normal mean and standard deviation. Stat. Meth. Med. Res. 21, 347–359 (2010)

    Article  MathSciNet  Google Scholar 

  7. Buntao, N., Niwitpong, S.: Confidence intervals for the ratio of coefficients of variation of delta-lognormal distribution. Appl. Math. Sci. 7, 3811–3818 (2013)

    Article  MathSciNet  Google Scholar 

  8. Niwitpong, S., Wongkhao, A.: Confidence intervals for the difference and the ratio of coefficients of variation of normal distribution with a known ratio of variances. Int. J. Math. Trends Technol. 29, 13–20 (2016)

    Article  Google Scholar 

  9. Sangnawakij, P., Niwitpong, S.-A., Niwitpong, S.: Confidence intervals for the ratio of coefficients of variation of the gamma distributions. In: Huynh, V.-N., Inuiguchi, M., Denoeux, T. (eds.) IUKM 2015. LNCS (LNAI), vol. 9376, pp. 193–203. Springer, Heidelberg (2015). doi:10.1007/978-3-319-25135-6_19

    Chapter  Google Scholar 

  10. Salem, S.A., El-Glad, F.A.: Bayesian prediction for the range based on a two-parameter exponential distribution with a random sample size. Microelectron. Reliab. 33, 623–632 (1993)

    Article  Google Scholar 

  11. Hahn, G.J., Meeker, W.Q.: Statistical Interval: A Guide for Practitioners. Wiley, Hoboken (1991)

    Book  MATH  Google Scholar 

  12. Thiagarajah, K., Paul, S.R.: Interval estimation for the scale parameter of the two-parameter exponential distribution based on time-censored data. J. Stat. Plann. Infer. 59, 279–289 (1997)

    Article  MATH  Google Scholar 

  13. Dijk, A.I.J.M., Meesters, A.G.C.A., Schellekens, J., Bruijnzeel, L.A.: A two-parameter exponential rainfall depth-intensity distribution applied to runoff and erosion modelling. J. Hydrol. 300, 155–171 (2005)

    Article  Google Scholar 

  14. Berger, A., Melice, J.L., Demuth, C.: Statistical distributions of daily and high atmospheric SO\(_{2}\) concentrations. Atmos. Environ. 16, 2863–2877 (1982)

    Article  Google Scholar 

  15. Lu, H., Fang, G.: Estimating the emission source reduction of PM\(_{10}\) in central Taiwan. Chemosphere 54, 805–814 (2004)

    Article  Google Scholar 

  16. Lawless, J.F.: Statistical Models and Methods for Lifetime Data. Wiley, New York (2003)

    MATH  Google Scholar 

  17. Sangnawakij, P., Niwitpong, S.: Confidence intervals for coefficients of variation in two-parameter exponential distributions. (Accepted for publication in Communications in Statistics: Simulation and Computation)

    Google Scholar 

  18. Weerahandi, S.: Generalized confidence intervals. J. Am. Stat. Assoc. 88, 899–905 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  19. Zou, G.Y., Huang, W., Zhang, X.: A note on confidence interval estimation for a linear function of binomial proportions. Comput. Stat. Data Anal. 53, 1080–1085 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Roya, A., Bose, A.: Coverage of generalized confidence intervals. J. Multivar. Anal. 100, 1384–1397 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  21. Notes on R: A programming environment for data analysis and graphics, http://cran.r-project.org/

  22. Freireich, T.R., Gehan, E., Frei, E., Schroeder, L.R., Wolman, I.J., Anbari, R., Burgert, E.O., Mills, S.D., Pinkel, D., Selawry, O.S., Moon, J.H., Gendel, B.R., Spurr, C.L., Storrs, R., Haurani, F., Hoogstraten, B., Lee, S.: The Effect of 6-mercaptopurine on the duration of steroid induced remissions in acute leukemia: a model for evaluation of other potentially useful therapy. Blood 21, 699–716 (1963)

    Google Scholar 

Download references

Acknowledgments

The first author gratefully acknowledges the financial support from Faculty of Applied Sciences, King Mongkut’s University of Technology North Bangkok. We are also grateful to the referees for the valuable suggestions, which lead to improve the quality of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sa-Aat Niwitpong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Sangnawakij, P., Niwitpong, SA., Niwitpong, S. (2016). Confidence Intervals for the Ratio of Coefficients of Variation in the Two-Parameter Exponential Distributions. In: Huynh, VN., Inuiguchi, M., Le, B., Le, B., Denoeux, T. (eds) Integrated Uncertainty in Knowledge Modelling and Decision Making. IUKM 2016. Lecture Notes in Computer Science(), vol 9978. Springer, Cham. https://doi.org/10.1007/978-3-319-49046-5_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49046-5_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49045-8

  • Online ISBN: 978-3-319-49046-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics