[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Confidence Intervals for Coefficient of Variation of Three Parameters Delta-Lognormal Distribution

  • Conference paper
  • First Online:
Structural Changes and their Econometric Modeling (TES 2019)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 808))

Included in the following conference series:

Abstract

The aim of this paper is to propose confidence intervals using the concepts that include the generalized fiducial interval (GFI) and the method of variance estimates recovery (MOVER). The performance of the proposed approaches were gauged in terms of the coverage probabilities and the expected lengths. Simulation studies shown that GFI outperformed other approaches with small sample sizes together with small variances. For larger sample sizes, GFI and MOVER based on the Jeffreys performed better than the other approaches when the variances were large. Furthermore, the results for the cases of high proportion of non-zero values of large sample sizes indicated that GFI is suited for small variance, and if variances are growing, then MOVER based on the Wilson score should be chosen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 143.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
GBP 179.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Aitchison, J.: On the distribution of a positive random variable having a discrete probability and mass at the origin. J. Am. Stat. Assoc. 50, 901–908 (1955)

    MathSciNet  MATH  Google Scholar 

  2. Aitchison, J., Brown, J.A.C.: The Lognormal Distribution. Cambridge University Press, Toronto (1957)

    MATH  Google Scholar 

  3. Blom, G.: Transformations of the binomial, negative binomial, poisson and \(\chi ^{2}\) distributions. Biometrika 41, 302–316 (1954)

    MathSciNet  MATH  Google Scholar 

  4. Brown, L.D., Cai, T.T., DasGupta, A.: Interval estimation for a binomial proportion. Stat. Sci. 16, 101–117 (2001)

    MathSciNet  MATH  Google Scholar 

  5. Buntao, N., Niwitpong, S.: Confidence intervals for the difference of coefficients of variation for lognormal distributions and delta-lognormal distributions. Appl. Math. Sci 6, 6691–6704 (2012)

    MathSciNet  Google Scholar 

  6. Buntao, N., Niwitpong, S.: Confidence intervals for the ratio of coefficients of variation of delta-lognormal distribution. Appl. Math. Sci. 7, 3811–3818 (2013)

    MathSciNet  Google Scholar 

  7. Callahan, C.M., Kesterson, J.G., Tierney, W.M.: Association of symptoms of depression with diagnostic test charges. Ann. Intern. Med. 126, 426–432 (1997)

    Article  Google Scholar 

  8. Chen, Y.H., Zhou, X.H.: Generalized confidence intervals for the ratio or difference of two means for lognormal populations with zeros, UW Biostatistics Working Paper Series (2006). http://biostats.bepress.com/uwbiostat/paper296

  9. DasGupta, A.: Asymptotic Theory of Statistics and Probability. Springer, New York (2008)

    MATH  Google Scholar 

  10. Donner, A., Zou, G.Y.: Closed-form confidence intervals for functions of the normal mean and standard deviation. Stat. Methods Med. Res. 21, 347–359 (2010)

    Article  MathSciNet  Google Scholar 

  11. Donner, A., Zou, G.Y.: Estimating simultaneous confidence intervals for multiple contrasts of proportions by the method of variance estimates recovery. Stat. Biopharm. Res. 3, 320–335 (2011)

    Article  Google Scholar 

  12. Fisher, R.A.: Inverse probability. Math. Proc. Cambridge Philos. Soc. 26(4), 528–535 (1930). https://doi.org/10.1017/S0305004100016297

    Article  MATH  Google Scholar 

  13. Fletcher, D.: Confidence intervals for the mean of the delta-lognormal distribution. Environ. Ecol. Stat. 15, 175–189 (2008)

    Article  MathSciNet  Google Scholar 

  14. Hannig, J.: On generalized fiducial inference. Stat. Sin. 19, 491–544 (2009)

    MathSciNet  MATH  Google Scholar 

  15. Hannig, J., Iyer, H., Patterson, P.: Fiducial generalized confidence intervals. J. Am. Stat. Assoc. 101, 254–269 (2006). https://doi.org/10.1198/016214505000000736

    Article  MathSciNet  MATH  Google Scholar 

  16. Kvanli, A.H., Shen, Y.K., Deng, L.Y.: Construction of confidence intervals for the mean of a population containing many zero values. J. Bus. Econ. Stat. 16, 362–368 (2012)

    Google Scholar 

  17. Li, X., Zhou, X., Tian, L.: Interval estimation for the mean of lognormal data with excess zeros. Stat. Probab. Lett. 83, 2447–2453 (2013)

    Article  MathSciNet  Google Scholar 

  18. Mahmoudvand, R., Hassani, H.: Two new confidence intervals for the coefficient of variation in a normal distribution. J. Appl. Stat. 36, 429–442 (2009)

    Article  MathSciNet  Google Scholar 

  19. Maneerat, P., Niwitpong, S., Niwitpong, S.: Confidence intervals for the ratio of means of delta-lognormal distribution. In: Anh, L., Dong, L., Kreinovich, V., Thach, N. (eds.) Econometrics for Financial Applications. ECONVN 2018. Studies in Computational Intelligence, vol 760, pp. 161–174. Springer, Cham (2018)

    MATH  Google Scholar 

  20. Niwitpong, S.: Confidence intervals for coefficient of variation of lognormal distribution with restricted parameter space. Appl. Math. Sci. 7, 3805–3810 (2013)

    MathSciNet  Google Scholar 

  21. Owen, W.J., DeRouen, T.A.: Estimation of the mean for lognormal data containing zeroes and left-censored values, with applications to the measurement of worker exposure to air contaminants. Biometrics 36, 707–719 (1980)

    Article  Google Scholar 

  22. Pennington, M.: Efficient estimators of abundance, for fish and plankton surveys. Biometrics 39, 281–286 (1983)

    Article  Google Scholar 

  23. Sangnawakij, P., Niwitpong, S.: Confidence intervals for coefficients of variation in two-parameter exponential distributions. Commun. Stat. Simul. Comput. 46, 1–13 (2017)

    Article  MathSciNet  Google Scholar 

  24. Sangnawakij, P., Niwitpong, S., Niwitpong, S.: Confidence intervals for the ratio of coefficients of variation of the gamma distribution. In: Huynh, V.N., Inuiguchi, M., Demoeux, T. (eds.) Integrated Uncertainty in Knowledge Modelling and Decision Making. Lecture Notes in Computer Science, vol. 9376, pp. 193–203. Springer, Cham (2015)

    MATH  Google Scholar 

  25. Smith, S.J.: Use of statistical models for the estimation of abundance from ground-fish trawl survey data. Can. J. Fish. Aquat. Sci. 47, 894–903 (1990)

    Article  Google Scholar 

  26. Thangjai, W., Niwitpong, S.: Confidence intervals for the weighted coefficients of variation of two-parameter exponential distributions. Cogent Math. (2017). https://doi.org/10.1080/23311835.2017.1315880

  27. Tian, L.: Inferences on the mean of zero-inflated lognormal data: the generalized variable approach. Stat. Med. 24, 3223–3232 (2005)

    Article  MathSciNet  Google Scholar 

  28. Tian, L., Wu, J.: Confidence intervals for the mean of lognormal data with excess zeros. Biom. J. 48, 149–156 (2006)

    Article  MathSciNet  Google Scholar 

  29. Wilks, S.S.: Shortest average confidence intervals from large samples. Ann. Math. Stat. 9, 166–175 (1938)

    Article  Google Scholar 

  30. Wilson, E.B.: Probable inference, the law of succession, and statistical inference. J. Am. Stat. Assoc. 22, 209–212 (1927)

    Article  Google Scholar 

  31. Wong, A.C.M., Wu, J.: Small sample asymptotic inference for the coefficient of variation: normal and nonnormal models. J. Stat. Plan. Inference 104, 73–82 (2002)

    Article  MathSciNet  Google Scholar 

  32. Wongkhao, A., Niwitpong, S., Niwitpong, S.: Confidence intervals for the raio of two independent coefficients of variation of normal distribution. Far East J. Math. Sci. 98, 741–757 (2015)

    MATH  Google Scholar 

  33. Wu, W.H., Hsieh, H.N.: Generalized confidence interval estimation for the mean of delta-lognormal distribution: an application to New Zealand trawl survey data. J. Appl. Stat. 41, 1471–1485 (2014)

    Article  MathSciNet  Google Scholar 

  34. Yosboonruang, N., Niwitpong, S., Niwitpong, S.: Confidence intervals for the coefficient of variation of the delta-lognormal distribution. In: Anh, L., Dong, L., Kreinovich, V., Thach, N. (eds.) Econometrics for Financial Applications, ECONVN 2018. Studies in Computational Intelligence, vol. 760, pp. 327–337. Springer, Cham (2018)

    Google Scholar 

  35. Zhou, X.H., Tu, W.: Confidence intervals for the mean of diagnostic test charge data containing zeros. Biometrics 56, 1118–1125 (2000)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was funded by King Mongkut’s University of Technology North Bangkok. Grant number: KMUTNB-61-PHD-004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sa-Aat Niwitpong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yosboonruang, N., Niwitpong, S., Niwitpong, SA. (2019). Confidence Intervals for Coefficient of Variation of Three Parameters Delta-Lognormal Distribution. In: Kreinovich, V., Sriboonchitta, S. (eds) Structural Changes and their Econometric Modeling. TES 2019. Studies in Computational Intelligence, vol 808. Springer, Cham. https://doi.org/10.1007/978-3-030-04263-9_27

Download citation

Publish with us

Policies and ethics