[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Optimizing the Light Trap Position for Brown Planthopper (BPH) Surveillance Network

  • Conference paper
  • First Online:
Nature of Computation and Communication (ICTCC 2016)

Abstract

To forecast the population of brown planthopper (BPH), a major insect pest of rice in Mekong Delta in Viet Nam, a light trap network is used in the experiments where the BPH trapped density is considered as monitoring called BPH light trap surveillance network (BSNET). There are two problems in order to deploy the BSNET: the number of the light traps and their positions. In this paper, we propose a new approach to optimize the BSNET by determining the number of light traps needed and the position for every light trap node in the surveillance region based on HoneyComb architecture. The experiment results are performed on the Brown Planthoppers surveillance network for Mekong Delta in Viet Nam.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Köhl, M., Magnussen, S.S.: Sampling Methods, Remote Sensing and GIS Multiresource Forest Inventory. Springer, Heidelberg (2006)

    Book  Google Scholar 

  2. Nguyen, K.M., Lam, B.H., Truong, T.P., Pham, H.M.T., Ho, C.V., Bernard, P., Huynh, H.X.: Automatic light-trap using sensors. In: Proceeding in National Conference on Information and Communication Technology (2015)

    Google Scholar 

  3. Wang, B.: Coverage problems in sensor networks: a survey. ACM Comput. Surv. 43(4), 32:1–32:53 (2011). http://doi.acm.org/10.1145/1978802.1978811

    Article  Google Scholar 

  4. Kozak, R.W.M.: PS sampling versus stratified sampling comparison of efficiency in agricultural surveys. Stat. Transit. 7(1), 5–12 (2005)

    Google Scholar 

  5. Talvitie, M., Leino, O., Holopainen, M.: Inventory of sparse forest populations using adaptive cluster sampling. Finnish Soc. For. Sci. Silva Fennica, 0037–5330 (2006)

    Google Scholar 

  6. Warrick, A.W., Myers, D.E.: Optimization of sampling locations for variogram calculations. Water Resour. Res. 23(3), 496–500 (1987). http://dx.doi.org/10.1029/WR023i003p00496

    Article  Google Scholar 

  7. Brus, D.J., Heuvelink, G.B.: Optimization of sample patterns for universal kriging of environmental variables. Geoderma 138(12), 86–95 (2007)

    Article  Google Scholar 

  8. Jourdan, D., de Weck, O.: Layout optimization for a wireless sensor network using a multi-objective genetic algorithm. In: 2004 IEEE 59th Vehicular Technology Conference, VTC 2004-Spring, vol. 5, pp. 2466–2470 (2004)

    Google Scholar 

  9. Lee, J.-H., Moon, I.: Modeling and optimization of energy efficient routing in wireless sensor networks. Appl. Math. Model. 38(78), 2280–2289 (2014)

    Article  MathSciNet  Google Scholar 

  10. Gogu, A., Nace, D., Dilo, A., Mertnia, N.: Optimization problems in wireless sensor networks. In: 2011 International Conference on Complex, Intelligent and Software Intensive Systems (CISIS), pp. 302–309, June 2011

    Google Scholar 

  11. Niewiadomska-Szynkiewicz, E., Marks, M.: Optimization schemes for wireless sensor network localization. Int. J. Appl. Math. Comput. Sci. 19(2), 291–302 (2009)

    Article  MATH  Google Scholar 

  12. Xuan, V.T., Huynh, X.-H., Le Ngoc, M., Drogoul, A.: Optimizing an environmental surveillance network with Gaussian process entropy - an optimization approach by agent-based simulation. In: 7th International KES Conference on Agents and Multi-agent Systems - Technologies and Applications, Vietnam, May 2013

    Google Scholar 

  13. Aioffi, W., Mateus, G., Quintao, F.: Optimization issues and algorithms for wireless sensor networks with mobile sink. In: Proceedings of INOC (2007)

    Google Scholar 

  14. Iqbal, M., Naeem, M., Anpalagan, A., Ahmed, A., Azam, M.: Wireless sensor network optimization: multi-objective paradigm. Sensors 15(7), 17572 (2015)

    Article  Google Scholar 

  15. Madan, R., Cui, S., Lall, S., Goldsmith, A.: Modeling and optimization of transmission schemes in energy-constrained wireless sensor networks. IEEE/ACM Trans. Network. 15(6), 1359–1372 (2007)

    Article  Google Scholar 

  16. Gopakumar, A., Jacob, L.: Localization in wireless sensor networks using particle swarm optimization. In: IET International Conference on Wireless, Mobile and Multimedia Networks, 2008, pp. 227–230, January 2008

    Google Scholar 

  17. Ghari, P.M., Shahbazian, R., Ghorashi, S.A.: Localization in Wireless Sensor Networks Using Quadratic Optimization, ArXiv e-prints, August 2014

    Google Scholar 

  18. Monica, Stefania, Ferrari, Gianluigi: Particle swarm optimization for auto-localization of nodes in wireless sensor networks. In: Tomassini, Marco, Antonioni, Alberto, Daolio, Fabio, Buesser, Pierre (eds.) ICANNGA 2013. LNCS, vol. 7824, pp. 456–465. Springer, Heidelberg (2013). doi:10.1007/978-3-642-37213-1_47

    Chapter  Google Scholar 

  19. Cressie, N.A.C.: Statistics for Spatial Data. Wiley-Interscience, New York (1993)

    MATH  Google Scholar 

  20. Truong, V.X., Huynh, H.X., Le, M.N., Drogoul, A.: Estimating the density of brown plant hoppers from a light-traps network based on unit disk graph. In: Zhong, N., Callaghan, V., Ghorbani, A.A., Hu, B. (eds.) AMT 2011. LNCS, vol. 6890, pp. 276–287. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23620-4_30. http://dl.acm.org/citation.cfm?id=2033896.2033931

    Chapter  Google Scholar 

  21. Truong, V.X., Huynh, H.X., Le, M.N., Drogoul, A.: Modeling a surveillance network based on unit disk graph technique – application for monitoring the invasion of insects in Mekong Delta region. In: Rahwan, I., Wobcke, W., Sen, S., Sugawara, T. (eds.) PRIMA 2012. LNCS (LNAI), vol. 7455, pp. 228–242. Springer, Heidelberg (2012). doi:10.1007/978-3-642-32729-2_16

    Chapter  Google Scholar 

  22. Erman, A.T., Dilo, A., Havinga, P.J.M.: A virtual infrastructure based on honeycomb tessellation for data dissemination in multi-sink mobile wireless sensor networks. EURASIP J. Wirel. Commun. Network. 2012, 17 (2012)

    Article  Google Scholar 

  23. Palanivelu, T.G., Nakkeeran, R.: Wireless - Mobile communication

    Google Scholar 

  24. Vaithilingam, D.C.: Role of insect light trap in organic agriculture, Romvijay Biootech Private Limited (2013)

    Google Scholar 

  25. Linker, D.B.O.H.M., Barbercheck, M.E.: Insect management on organic farms (2009)

    Google Scholar 

  26. Brown planthopper: Threat to rice, International Rice Research Institude (1979)

    Google Scholar 

  27. Khoufi, I., Minet, P., Laouiti, A., Mahfoudh, S., Survey of Deployment Algorithms in Wireless Sensor Networks: Coverage and Connectivity Issues and Challenges. Int. J. Auton. Adapt. Commun. Syst. (IJAACS), p. 24 (2014)

    Google Scholar 

  28. Baltzis, K.B.: Hexagonal vs Circular Cell Shape: A Comparative Analysis and Evaluation of the two Popular Modeling Approximations. INTECH Open Access Publisher, Rijeka (2011)

    Google Scholar 

  29. Sun, Y., Yu, Z., Ge, J., Lin, B., Yun, Z.: On deploying wireless sensors to achieve both coverage, connectivity. In: Proceedings of the 5th International Conference on Wireless Communications, Networking, Mobile Computing, WiCOM 2009, Piscataway, NJ, USA, pp. 3369–3372. IEEE Press (2009). http://dl.acm.org/citation.cfm?id=1737966.1738288

  30. Ghosh, A., Das, S.K.: Coverage and connectivity issues in wireless sensor networks: a survey. Pervasive Mob. Comput. 4(3), 303–334 (2008)

    Article  MathSciNet  Google Scholar 

  31. Zhu, C., Zheng, C., Shu, L., Han, G.: Review: a survey on coverage and connectivity issues in wireless sensor networks. J. Netw. Comput. Appl. 35(2), 619–632 (2012). http://dx.doi.org/10.1016/j.jnca.2011.11.016

    Article  Google Scholar 

  32. Zhang, H., Hou, J.C.: Maintaining sensing coverage and connectivity in large sensor networks. Ad Hoc Sens. Wirel. Netw. 1(1–2), 89–124 (2005)

    Google Scholar 

  33. Bai, X., Kumar, S., Xuan, D., Yun, Z., Lai, T.H.: Deploying wireless sensors to achieve both coverage, connectivity. In: Proceedings of the 7th ACM International Symposium on Mobile Ad Hoc Networking, Computing, MobiHoc 2006, pp. 131–142. ACM, New York (2006). http://doi.acm.org/10.1145/1132905.1132921

  34. Wang, Y.-C., Hu, C.-C., Tseng, Y.-C.: Efficient deployment algorithms for ensuring coverage and connectivity of wireless sensor networks, In: Imre, S., Crowcroft, J. (eds.) WICON, pp. 114–121. IEEE Computer Society, Washington (2005)

    Google Scholar 

  35. Netgen website, A generator of concurrent systems. http://wsn.univ-brest.fr/NetGenNews

  36. Gama website, Modeling, simulation platform. https://github.com/gama-platforms

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huong Hoang Luong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Cite this paper

Luong, H.H., Truong, T.P., Nguyen, K.M., Lam, B.H., Huynh, H.X. (2016). Optimizing the Light Trap Position for Brown Planthopper (BPH) Surveillance Network. In: Vinh, P., Barolli, L. (eds) Nature of Computation and Communication. ICTCC 2016. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 168. Springer, Cham. https://doi.org/10.1007/978-3-319-46909-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-46909-6_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-46908-9

  • Online ISBN: 978-3-319-46909-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics