Abstract
In this paper, we consider the problem of auto-localization of the nodes of a static Wireless Sensor Network (WSN) where nodes communicate through Ultra Wide Band (UWB) signaling. In particular, we investigate auto-localization of the nodes assuming to know the position of a few initial nodes, denoted as “beacons”. In the considered scenario, we compare the location accuracy obtained with the widely used Two-Stage Maximum-Likelihood algorithm with that achieved with an algorithm based on Particle Swarming Optimization (PSO). Accurate simulation results show that the latter can significantly outperform the former.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Gezici, S., Poor, H.V.: Position estimation via ultra-wide- band signals. Proc. IEEE 97(2), 386–403 (2009)
Zhang, J., Orlik, P.V., Sahinoglu, Z., Molisch, A.F., Kinney, P.: UWB systems for wireless sensor networks. Proc. IEEE 97(2), 313–331 (2009)
Wade, H.F.: Position-location solutions by Taylor-series estimation. IEEE Trans. Aerosp. Electron. Syst. AES-12(2), 187–194 (1976)
Mensing, C., Plass, S.: Positioning algorithms for cellular networks using TDOA. In: Proceedings of the 2006 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2006, vol. 4 (May 2006)
Shen, G., Zetik, R., Thomä, R.S.: Performance comparison of TOA and TDOA based location estimation algorithms in LOS environment. In: Proceedings of the 5th Workshop on Positioning, Navigation and Communication, WPNC 2008 (2008)
Schmidt, R.O.: A new approach to geometry of range difference location. IEEE Trans. Aerosp. Electron. Syst. AES-8(6), 821–835 (1972)
Chan, Y., Ho, K.C.: A simple and efficient estimator for hyperbolic location. IEEE Trans. Signal Process 42(8), 1905–1915 (1994)
Ho, K.C., Xu, W.: An accurate algebraic solution for moving source location using TDOA and FDOA measurements. IEEE Trans. Signal Process. 52(9), 2453–2463 (2004)
Ho, K.C., Lu, X., Kovavisaruch, L.: Source localization using TDOA and FDOA measurements in the presence of receiver location errors: analysis and solution. IEEE Trans. Signal Process. 55(2), 684–696 (2007)
Busanelli, S., Ferrari, G.: Improved ultra wideband-based tracking of twin-receiver automated guided vehicles. Journal of Integrated Computer-Aided Engineering 19(1), 3–22 (2012)
Molisch, A.F., Cassioli, D., Chong, C.-C., Emami, S., Fort, A., Kannan, B., Karedal, J., Kunisch, J., Schantz, H.G., Siwiak, K., Win, M.Z.: A comprehensive standardized model for ultrawideband propagation channels. IEEE Trans. Antennas Propagat. 54(11), 3151–3166 (2006)
Dardari, D., Chong, C.C., Win, M.Z.: Threshold-based time-of-arrival estimators in uwb dense multipath channels. IEEE Trans. Commun. 56(8), 1366–1378 (2008)
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. IEEE International Conf. on Neural Networks, Perth, Australia, IEEE Service Center, Piscataway (1995)
Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intelligence Journal 1(1) (2007)
Eberhart, R., Kermedy, J.: A new optimizer using particles swarm theory. In: Proc. Sixth International Symposium on Micro Machine and Hmm Science, Nagoya, Japan, IEEE Service Center, Piscataway (1995)
Shi, Y., Eberhart, R.: A modied particle swarm optimizer. In: Proc. IEEE International Conference on Evolutionary Computation, Piscataway, NJ, pp. 69–73 (1999)
Monica, S., Ferrari, G.: Impact of the number of beacons in PSO-based auto-localization in UWB networks. To appear in Proceedings of EvoApplications (2013)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Monica, S., Ferrari, G. (2013). Particle Swarm Optimization for Auto-localization of Nodes in Wireless Sensor Networks. In: Tomassini, M., Antonioni, A., Daolio, F., Buesser, P. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2013. Lecture Notes in Computer Science, vol 7824. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-37213-1_47
Download citation
DOI: https://doi.org/10.1007/978-3-642-37213-1_47
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-37212-4
Online ISBN: 978-3-642-37213-1
eBook Packages: Computer ScienceComputer Science (R0)