Abstract
Counterfactual reasoning is an approach to infer what causes an observed effect by analyzing the hypothetical scenarios where a suspected cause is not present. The seminal works of Halpern and Pearl have provided a workable definition of counterfactual causality for finite settings. In this paper, we propose an approach to check causality that is tailored to reactive systems, i.e., systems that interact with their environment over a possibly infinite duration. We define causes and effects as trace properties which characterize the input and observed output behavior, respectively. We then instantiate our definitions for \(\omega \)-regular properties and give automata-based constructions for our approach. Checking that an \(\omega \)-regular property qualifies as a cause can then be encoded as a hyperproperty model-checking problem.
This work was funded by DFG grant 389792660 as part of TRR 248 – CPEC and by the German Israeli Foundation (GIF) Grant No. I-1513-407./2019.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
This is related to the notion of acceptance for words in nondeterministic Büchi automata [5], which recognize the class of \(\omega \)-regular languages.
References
Ábrahám, E., Bonakdarpour, B.: HyperPCTL: a temporal logic for probabilistic hyperproperties. In: McIver, A., Horvath, A. (eds.) QEST 2018. LNCS, vol. 11024, pp. 20–35. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99154-2_2
Baier, C., Coenen, N., Finkbeiner, B., Funke, F., Jantsch, S., Siber, J.: Causality-based game solving. In: Silva, A., Leino, K.R.M. (eds.) CAV 2021. LNCS, vol. 12759, pp. 894–917. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-81685-8_42
Baier, C., et al.: From verification to causality-based explications. In: ICALP 2021 (2021)
Beer, I., Ben-David, S., Chockler, H., Orni, A., Trefler, R.: Explaining counterexamples using causality. Formal Methods Syst. Design 40, 20–40 (2012)
Buechi, J.R.: On a decision method in restricted second-order arithmetic. In: International Congress on Logic, Methodology, and Philosophy of Science (1962)
Caltais, G., Guetlein, S.L., Leue, S.: Causality for general LTL-definable properties. In: CREST@ETAPS 2018 (2018)
Chockler, H., Halpern, J.Y., Kupferman, O.: What causes a system to satisfy a specification? ACM Trans. Comput. Log. 9, 1–26 (2008)
Clarkson, M.R., Schneider, F.B.: Hyperproperties. J. Comput. Secur. 18, 1157–1210 (2010)
Coenen, N., et al.: Explaining hyperproperty violations. In: Shoham, S., Vizel, Y. (eds.) CAV 2022. LNCS, vol. 13371, pp. 407–429. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-13185-1_20
Datta, A., Garg, D., Kaynar, D.K., Sharma, D., Sinha, A.: Program actions as actual causes: a building block for accountability. In: CSF 2015 (2015)
Dimitrova, R., Finkbeiner, B., Torfah, H.: Probabilistic hyperproperties of Markov decision processes. In: Hung, D.V., Sokolsky, O. (eds.) ATVA 2020. LNCS, vol. 12302, pp. 484–500. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59152-6_27
Gössler, G., Le Métayer, D.: A general trace-based framework of logical causality. In: Fiadeiro, J.L., Liu, Z., Xue, J. (eds.) FACS 2013. LNCS, vol. 8348, pp. 157–173. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07602-7_11
Gössler, G., Stefani, J.: Causality analysis and fault ascription in component-based systems. Theor. Comput. Sci. 837, 158–180 (2020)
Groce, A., Chaki, S., Kroening, D., Strichman, O.: Error explanation with distance metrics. Int. J. Softw. Tools Technol. Transf. 8, 229–247 (2006)
Halpern, J.Y.: A modification of the Halpern-Pearl definition of causality. In: IJCAI 2015 (2015)
Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach. Part I: causes. Br. J. Philos. Sci. 56, 843–887 (2005)
Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach. Part II: explanations. Br. J. Philos. Sci. 56, 889–911 (2005)
Holzmann, G.J.: The model checker SPIN. IEEE Trans. Softw. Eng. 23, 279–295 (1997)
Hume, D.: An Enquiry Concerning Human Understanding. London (1748)
Kleinberg, S., Mishra, B.: The temporal logic of causal structures. In: UAI 2009 (2009)
Kupriyanov, A., Finkbeiner, B.: Causal termination of multi-threaded programs. In: Biere, A., Bloem, R. (eds.) CAV 2014. LNCS, vol. 8559, pp. 814–830. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08867-9_54
Leitner-Fischer, F., Leue, S.: Causality checking for complex system models. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 248–267. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35873-9_16
Lewis, D.K.: Counterfactuals. Blackwell, Cambridge (1973)
Moore, E.F.: Gedanken-experiments on sequential machines. Aut. stud. 34, 129–153 (1956)
Pnueli, A.: The temporal logic of programs. In: FOCS 1977 (1977)
Rabe, M.N.: A temporal logic approach to information-flow control. Ph.D. thesis, Saarland University (2016)
Sistla, A.P.: Theoretical issues in the design and verification of distributed systems. Ph.D. thesis (1983)
Ziemek, R., Piribauer, J., Funke, F., Jantsch, S., Baier, C.: Probabilistic causes in Markov chains. Innov. Syst. Softw. Eng. 18, 347–367 (2022)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Coenen, N., Finkbeiner, B., Frenkel, H., Hahn, C., Metzger, N., Siber, J. (2022). Temporal Causality in Reactive Systems. In: Bouajjani, A., Holík, L., Wu, Z. (eds) Automated Technology for Verification and Analysis. ATVA 2022. Lecture Notes in Computer Science, vol 13505. Springer, Cham. https://doi.org/10.1007/978-3-031-19992-9_13
Download citation
DOI: https://doi.org/10.1007/978-3-031-19992-9_13
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19991-2
Online ISBN: 978-3-031-19992-9
eBook Packages: Computer ScienceComputer Science (R0)