[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

A General Trace-Based Framework of Logical Causality

  • Conference paper
  • First Online:
Formal Aspects of Component Software (FACS 2013)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 8348))

Included in the following conference series:

Abstract

In component-based safety-critical embedded systems it is crucial to determine the cause(s) of the violation of a safety property, be it to issue a precise alert, to steer the system into a safe state, or to determine liability of component providers. In this paper we present an approach to blame components based on a single execution trace violating a safety property \(P\). The diagnosis relies on counterfactual reasoning (“what would have been the outcome if component \(C\) had behaved correctly?”) to distinguish component failures that actually contributed to the outcome from failures that had little or no impact on the violation of \(P\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 35.99
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 44.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    It is straight-forward to allow for additional information in traces \(tr\in B\) that is not observable in the log, by adding to the cartesian product of \(\varSigma \) another alphabet that does not appear in the projections. For instance, events may be recorded with some timing uncertainty rather than precise time stamps [23].

  2. 2.

    For the sake of readability we omit the prefix closure of the specifications in the examples.

References

  1. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126, 183–235 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M., Nguyen, T.-H., Sifakis, J.: Rigorous component-based system design using the BIP framework. IEEE Softw. 28(3), 41–48 (2011)

    Article  Google Scholar 

  3. Beckers, S., Vennekens, J.: Counterfactual dependency and actual causation in cp-logic and structural models: a comparison. In: Kersting, K., Toussaint, M. (eds.) STAIRS. Frontiers in Artificial Intelligence and Applications, vol. 241, pp. 35–46. IOS Press (2012)

    Google Scholar 

  4. Beer, I., Ben-David, S., Chockler, H., Orni, A., Trefler, R.J.: Explaining counterexamples using causality. Formal Methods Syst. Des. 40(1), 20–40 (2012)

    Article  MATH  Google Scholar 

  5. Fabre, E., Benveniste, A., Haar, S., Jard, C.: Distributed monitoring of concurrent and asynchronous systems. Discrete Event Dyn. Syst. 15(1), 33–84 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Fey, G., Staber, S., Bloem, R., Drechsler, R.: Automatic fault localization for property checking. IEEE Trans. CAD Integr. Circ. Syst. 27(6), 1138–1149 (2008)

    Article  Google Scholar 

  7. Fidge, C.J.: Timestamps in message-passing systems that preserve the partial ordering. In: Raymond, K. (ed.) Proceedings of the ACSC’88, pp. 56–66 (1988)

    Google Scholar 

  8. Gössler, G., Le Métayer, D., Raclet, J.-B.: Causality analysis in contract violation. In: Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu, G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 270–284. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Gössler, G., Sifakis, J.: Composition for component-based modeling. Sci. Comput. Prog. 55(1–3), 161–183 (2005)

    Article  MATH  Google Scholar 

  10. Groce, A., Chaki, S., Kroening, D., Strichman, O.: Error explanation with distance metrics. STTT 8(3), 229–247 (2006)

    Article  Google Scholar 

  11. Halbwachs, N., Caspi, P., Raymond, P., Pilaud, D.: The synchronous dataflow programming language Lustre. Proc. IEEE 79(9), 1305–1320 (1991)

    Article  Google Scholar 

  12. Halpern, J.Y., Pearl, J.: Causes and explanations: a structural-model approach. part I: Causes. Br. J. Philos. Sci. 56(4), 843–887 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hume, D.: An Enquiry Concerning Human Understanding (1748)

    Google Scholar 

  14. Jobstmann, B., Staber, S., Griesmayer, A., Bloem, R.: Finding and fixing faults. J. Comput. Syst. Sci. 78(2), 441–460 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kuntz, M., Leitner-Fischer, F., Leue, S.: From probabilistic counterexamples via causality to fault trees. In: Flammini, F., Bologna, S., Vittorini, V. (eds.) SAFECOMP 2011. LNCS, vol. 6894, pp. 71–84. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  16. Küsters, R., Truderung, T., Vogt, A.: Accountability: definition and relationship to verifiability. In: ACM Conference on Computer and Communications Security, pp. 526–535 (2010)

    Google Scholar 

  17. Lamport, L.: Time, clocks, and the ordering of events in a distributed system. CACM 21(7), 558–565 (1978)

    Article  MATH  Google Scholar 

  18. Lee, E.A., Sangiovanni-Vincentelli, A.: A framework for comparing models of computation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 17(12), 1217–1229 (1998)

    Article  Google Scholar 

  19. Leitner-Fischer, F., Leue, S.: Causality checking for complex system models. In: Giacobazzi, R., Berdine, J., Mastroeni, I. (eds.) VMCAI 2013. LNCS, vol. 7737, pp. 248–267. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  20. Mattern, F.: Virtual time and global states of distributed systems. In: Cosnard, M. (ed.) Proceedings of the Workshop on Parallel and Distributed Algorithms, pp. 215–226. Elsevier (1988)

    Google Scholar 

  21. Reiter, R.: A theory of diagnosis from first principles. Artif. Intell. 32(1), 57–95 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  22. Wang, S., Ayoub, A., Kim, B.G., Gössler, G., Sokolsky, O., Lee, I.: A causality analysis framework for component-based real-time systems. In: Legay, A., Bensalem, S. (eds.) RV 2013. LNCS, vol. 8174, pp. 285–303. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  23. Wang, S., Ayoub, A., Sokolsky, O., Lee, I.: Runtime verification of traces under recording uncertainty. In: Khurshid, S., Sen, K. (eds.) RV 2011. LNCS, vol. 7186, pp. 442–456. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  24. Zeller, A.: Why Programs Fail. Elsevier, Amsterdam (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregor Gössler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Gössler, G., Le Métayer, D. (2014). A General Trace-Based Framework of Logical Causality. In: Fiadeiro, J., Liu, Z., Xue, J. (eds) Formal Aspects of Component Software. FACS 2013. Lecture Notes in Computer Science(), vol 8348. Springer, Cham. https://doi.org/10.1007/978-3-319-07602-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07602-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07601-0

  • Online ISBN: 978-3-319-07602-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics