[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Robust Numerical Tracking of One Path of a Polynomial Homotopy on Parallel Shared Memory Computers

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12291))

Included in the following conference series:

Abstract

We consider the problem of tracking one solution path defined by a polynomial homotopy on a parallel shared memory computer. Our robust path tracker applies Newton’s method on power series to locate the closest singular parameter value. On top of that, it computes singular values of the Hessians of the polynomials in the homotopy to estimate the distance to the nearest different path. Together, these estimates are used to compute an appropriate adaptive step size. For n-dimensional problems, the cost overhead of our robust path tracker is O(n), compared to the commonly used predictor-corrector methods. This cost overhead can be reduced by a multithreaded program on a parallel shared memory computer.

M. Van Barel—Supported by the Research Council KU Leuven, C1-project (Numerical Linear Algebra and Polynomial Computations), and by the Fund for Scientific Research–Flanders (Belgium), G.0828.14N (Multivariate polynomial and rational interpolation and approximation), and EOS Project no 30468160.

J. Verschelde—Supported by the National Science Foundation under grant DMS 1854513.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adrovic, D., Verschelde, J.: Polyhedral methods for space curves exploiting symmetry applied to the cyclic n-roots problem. In: Gerdt, V.P., Koepf, W., Mayr, E.W., Vorozhtsov, E.V. (eds.) CASC 2013. LNCS, vol. 8136, pp. 10–29. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02297-0_2

    Chapter  Google Scholar 

  2. Backelin, J.: Square multiples n give infinitely many cyclic n-roots. Reports, Matematiska Institutionen 8, Stockholms universitet (1989)

    Google Scholar 

  3. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Adaptive multiprecision path tracking. SIAM J. Numer. Anal. 46(2), 722–746 (2008)

    Article  MathSciNet  Google Scholar 

  4. Bates, D.J., Hauenstein, J.D., Sommese, A.J., Wampler, C.W.: Numerically Solving Polynomial Systems with Bertini, vol. 25. SIAM (2013)

    Google Scholar 

  5. Bliss, N., Verschelde, J.: The method of Gauss-Newton to compute power series solutions of polynomial homotopies. Linear Algebra Appl. 542, 569–588 (2018)

    Article  MathSciNet  Google Scholar 

  6. Breiding, P., Timme, S.: HomotopyContinuation.jl: a package for homotopy continuation in Julia. In: Davenport, J.H., Kauers, M., Labahn, G., Urban, J. (eds.) ICMS 2018. LNCS, vol. 10931, pp. 458–465. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96418-8_54

    Chapter  Google Scholar 

  7. Christianson, B.: Automatic Hessians by reverse accumulation. IMA J. Numer. Anal. 12, 135–150 (1992)

    Article  MathSciNet  Google Scholar 

  8. Davenport, J.H.: Looking at a set of equations. Bath Computer Science Technical report 87–06 (1987)

    Google Scholar 

  9. Fabry, E.: Sur les points singuliers d’une fonction donnée par son développement en série et l’impossibilité du prolongement analytique dans des cas très généraux. In: Annales scientifiques de l’École Normale Supérieure, vol. 13, pp. 367–399. Elsevier (1896)

    Google Scholar 

  10. Führ, H., Rzeszotnik, Z.: On biunimodular vectors for unitary matrices. Linear Algebra Appl. 484, 86–129 (2015)

    Article  MathSciNet  Google Scholar 

  11. Griewank, A., Walther, A.: Evaluating derivatives: principles and techniques of algorithmic differentiation, vol. 105. SIAM (2008)

    Google Scholar 

  12. Hida, Y., Li, X.S., Bailey, D.H.: Algorithms for quad-double precision floating point arithmetic. In: The Proceedings of the 15th IEEE Symposium on Computer Arithmetic (Arith-15 2001), pp. 155–162. IEEE Computer Society (2001)

    Google Scholar 

  13. Jeronimo, G., Matera, G., Solernó, P., Waissbein, A.: Deformation techniques for sparse systems. Found. Comput. Math. 9, 1–50 (2009)

    Article  MathSciNet  Google Scholar 

  14. Katsura, S.: Spin glass problem by the method of integral equation of the effective field. In: Coutinho-Filho, M., Resende, S. (eds.) New Trends in Magnetism, pp. 110–121. World Scientific, London (1990)

    Google Scholar 

  15. Li, T., Tsai, C.: HOM4PS-2.0para: Parallelization of HOM4PS-2.0 for solving polynomial systems. Parallel Comput. 35(4), 226–238 (2009)

    Google Scholar 

  16. McCormick, J.W., Singhoff, F., Hugues, J.: Building Parallel, Embedded, and Real-Time Applications with Ada. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  17. Sommese, A.J., Verschelde, J.: Numerical homotopies to compute generic points on positive dimensional algebraic sets. J. Complexity 16(3), 572–602 (2000)

    Article  MathSciNet  Google Scholar 

  18. Telen, S., Van Barel, M., Verschelde, J.: A robust numerical path tracking algorithm for polynomial homotopy continuation. arXiv:1909.04984

  19. Trias, A.: The holomorphic embedding load flow method. In: 2012 IEEE Power and Energy Society General Meeting, pp. 1–8. IEEE (2012)

    Google Scholar 

  20. Trias, A., Martin, J.L.: The holomorphic embedding loadflow method for DC power systems and nonlinear DC circuits. IEEE Trans. Circuits Syst. 63(2), 322–333 (2016)

    Article  MathSciNet  Google Scholar 

  21. Verschelde, J.: Algorithm 795: PHCpack: a general-purpose solver for polynomial systems by homotopy continuation. ACM Trans. Math. Softw. (TOMS) 25(2), 251–276 (1999)

    Article  Google Scholar 

  22. Verschelde, J.: A blackbox polynomial system solver on parallel shared memory computers. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2018. LNCS, vol. 11077, pp. 361–375. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99639-4_25

    Chapter  Google Scholar 

  23. Verschelde, J., Yu, X.: Accelerating polynomial homotopy continuation on a graphics processing unit with double double and quad double arithmetic. In: Proceedings of the 7th International Workshop on Parallel Symbolic Computation (PASCO 2015), pp. 109–118. ACM (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Verschelde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Telen, S., Van Barel, M., Verschelde, J. (2020). Robust Numerical Tracking of One Path of a Polynomial Homotopy on Parallel Shared Memory Computers. In: Boulier, F., England, M., Sadykov, T.M., Vorozhtsov, E.V. (eds) Computer Algebra in Scientific Computing. CASC 2020. Lecture Notes in Computer Science(), vol 12291. Springer, Cham. https://doi.org/10.1007/978-3-030-60026-6_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-60026-6_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-60025-9

  • Online ISBN: 978-3-030-60026-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics