[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Continuous Tensor Field Approximation of Diffusion Tensor MRI data

  • Chapter
Visualization and Processing of Tensor Fields

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 2701 Accesses

Abstract

Diffusion Tensor MRI (DT-MRI) measurements are a discrete noisy sample of an underlying macroscopic effective diffusion tensor field, D(x), of water. This field is presumed to be piecewise continuous/smooth at a gross anatomical length scale. Here we describe a mathematical framework for obtaining an estimate of this tensor field from the measured DT-MRI data using a spline-based continuous approximation. This methodology facilitates calculation of new structural quantities and provides a framework for applying differential geometric methods to DT-MRI data. A B-spline approximation has already been used to improve robustness of DT-MRI fiber tractography. Here we propose a piecewise continuous approximation based on Non-Uniform Rational B-Splines (NURBS), which addresses some of the shortcomings of the previous implementation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 71.50
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
GBP 89.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. P.J. Basser, J. Mattiello, and D. Le Bihan. MR diffusion tensor spectroscopy and imaging. Biophysical Journal 66(1), 259–67 (1994).

    Article  Google Scholar 

  2. P.J. Basser. Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR in Biomedicine, 8(7–8), 333–44 (1995).

    Article  Google Scholar 

  3. P.J. Basser, and C. Pierpaoli. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. Journal of Magnetic Resonance B 111(3), 209–19 (1996).

    Article  Google Scholar 

  4. P.J. Basser. New histological and physiological stains derived from diffusiontensor MR images. Annals New York Acad Sci 820, 123–38 (1997).

    Article  Google Scholar 

  5. S. Pajevic, A. Aldroubi and P.J. Basser. A continuous tensor field approximation of discrete DT-MRI data for extracting microstructural and architectural features of tissue. Journal of Magnetic Resonance, 154, 85–100 (2002).

    Article  Google Scholar 

  6. T. E. Conturo, N. F. Lori, T. S. Cull, E. Akbudak, A. Z. Snyder, J. S. Shimony, R. C. McKinstry, H. Burton, M. E. Raichle, Tracking neuronal fiber pathways in the living human brain, Proceedings National Acad Sci USA 96, 10422–7 (1999).

    Article  Google Scholar 

  7. S. Mori, B. J. Crain, V. P. Chacko, P. C. M. van Zijl, Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging, Annals of Neurology, 45, 265–269 (1999).

    Article  Google Scholar 

  8. S. Mori, W. E. Kaufmann, G. D. Pearlson, B. J. Crain, B. Stieltjes, M. Solaiyappan, P. C. van Zijl, In vivo visualization of human neural pathways by magnetic resonance imaging, Annals of Neurology 47, 412–4 (2000).

    Article  Google Scholar 

  9. P.J. Basser, S. Pajevic, C. Pierpaoli, A. Aldroubi, and J. Duda. In Vivo Fiber-Tractography in Human Brain Using Diffusion Tensor MRI (DT-MRI) Data, Magnetic Resonance in Medicine, 44:625–632 (2000).

    Article  Google Scholar 

  10. A. Aldroubi and P.J. Basser, Reconstruction of vector and tensor fields from sampled discrete data. in ‘Contemporary Mathematics’. (L.W. Baggett, D.R. Larson, editors) pp. 1–15, American Math. Society, Providence, RI (1999).

    Google Scholar 

  11. C. Poupon, C. A. Clark, V. Frouin, J. Régis, I. Bloch, D. L. Bihan, J.-F. Mangin, Regularization of diffusion-based direction maps for the tracking of brain white matter fascicles, Neuroimage 12(2), 184–195 (2000).

    Article  Google Scholar 

  12. G. Parker, J. A. Schnabel, M. R. Symms, D. J. Werring, G. J. Barker, Nonlinear smoothing for reduction of systematic and random errors in diffusion tensor imaging, Journal of Magnetic Resonance Imaging, 11, 702–710 (2000).

    Article  Google Scholar 

  13. J.-F. Mangin, C. Poupon, C. Clark, D. Le Bihan and I. Bloch, Eddy-Current Distortion Correction and Robust Tensor Estimation for MR-Diffusion Imaging, Lecture Notes in Computer Science, 2208, 186 (2001).

    Article  Google Scholar 

  14. C.F. Westin, S.E. Maier, H. Mamata, A. Nabavi, F.A., Jolesz, R. Kikinis, Processing and visualization for diffusion tensor MRI. Medical Image Analysis, 6, 93–108 (2002).

    Article  Google Scholar 

  15. A. Aldroubi, M. Eden, and M. Unser. Discrete spline filters for multiresolutions and wavelets of L2, SIAM Journal on Mathematical Analysis, 25, 1412–1432 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  16. A. Aldroubi. Oblique projections in atomic spaces. Proceedings of the American Math. Society 124, 2051–2060 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Unser, A. Aldroubi, and M. Eden. B-Spline Signal Processing: Part II-Efficient Design and Implementation. IEEE Transactions on Signal Processing 41(2), 834–848 (1993).

    Article  MATH  Google Scholar 

  18. C. DeBoor, A Practical Guide to Splines, Springer-Verlag Telos, 1994

    Google Scholar 

  19. M. Unser, A. Aldroubi, and M. Eden. B-Spline Signal Processing: Part I-Theory. IEEE Transactions on Signal Processing 41(2), 821–833 (1993).

    Article  MATH  Google Scholar 

  20. M. Unser, A. Aldroubi, and M. Eden. Enlargment or reduction of digital images with minimum loss of information, IEEE Transactions on Image Processing 4, 247–258 (1995).

    Article  Google Scholar 

  21. L. Piegl, W. Tiller, The NURBS Book, Springer-Verlag, 1997

    Google Scholar 

  22. D.S. Tuch and T.G. Reese and M.R. Wiegell and N.G. Makris and J.W. Belliveau and V.J. Wedeen. High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity, Magnetic Resonance in Medicine, 48, 577–582 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pajevic, S., Aldroubi, A., Basser, P.J. (2006). Continuous Tensor Field Approximation of Diffusion Tensor MRI data. In: Weickert, J., Hagen, H. (eds) Visualization and Processing of Tensor Fields. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-31272-2_18

Download citation

Publish with us

Policies and ethics