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Summary. Diffusion Tensor MRI (DT-MRI) measurements are a discrete noisy
sample of an underlying macroscopic effective diffusion tensor field, D(x), of water.
This field is presumed to be piecewise continuous/smooth at a gross anatomical
length scale. Here we describe a mathematical framework for obtaining an estimate
of this tensor field from the measured DT-MRI data using a spline-based continuous
approximation. This methodology facilitates calculation of new structural quantities
and provides a framework for applying differential geometric methods to DT-MRI
data. A B-spline approximation has already been used to improve robustness of
DT-MRI fiber tractography. Here we propose a piecewise continuous approximation
based on Non-Uniform Rational B-Splines (NURBS), which addresses some of the
shortcomings of the previous implementation.

18.1 Introduction

Diffusion tensor MRI provides a measurement of an effective diffusion ten-
sor of water, DT, in each voxel within an imaging volume [1]. These diffusion
measurements are inherently discrete, noisy and voxel-averaged. Here we treat
DT-MRI data as discrete noisy samples of an underlying macroscopic piece-
wise continuous diffusion tensor field, D(x), where, x = (z, y, z) are the spatial
coordinates in the laboratory frame of reference. This field is presumed to be
piecewise continuous or smooth at a gross anatomical length scale, an as-
sumption based on the known anatomy of many soft fibrous tissues, including
white matter, muscles, ligaments, and tendons. One of our objectives is to de-
velop a mathematical framework to estimate this piecewise continuous field,
D(x), from discrete noisy DT-MRI measurements. A reliable estimate of this
field enables us to use differential geometric methods directly. Additionally, it
enables computation and display of intrinsic architectural or microstructural
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MRI features based upon tissue fiber geometry [2, 2]. Some previously sug-
gested characteristics are curvature and torsion of the individual fiber tracts,
as well as the properties of the tangent field, e.g. twisting, bending, and di-
verging [4]. Here we focus on estimating curvature of the fiber tracts (tangent
field) but also show the architectural features of the tensor field itself. Esti-
mating such quantities accurately using measured diffusion tensor data and
interpolation is difficult, since their evaluation requires spatial differentiation
of noisy tensor quantities. Below we show that they can be calculated more
reliably and robustly using continuous tensor field approximation.

Originally, estimating the tensor field from sample tensor data was per-
formed using B-spline approximation [5]. It was used with DT-MRI data to
elucidate fiber tract trajectories, which can be done by integrating the fiber
direction (vector) field [9]. Other methods for fiber tracking at the time uti-
lized interpolation or directly followed the local fiber orientation [6, 7, §],
with exception of Poupon et al. [11] who used a regularization method. In-
tegrating a noisy direction vector field can result in fiber trajectories that
wander off course. Using a smoothed representation of the direction field,
obtained from the continuous representation of D(x), however, can improve
the fidelity of tract following [9]. Establishing connectivity and continuity of
neural pathways can also benefit from the development of this specialized ten-
sor field processing methodology. These tasks require determining continuous
links between different regions of the brain, or assessing disjunctions between
them. Finally, there are a number of generic image processing tasks one would
like to perform on high dimensional DT-MRI data, since no signal processing
framework currently exists for these. These include: filtering noise, sharpen-
ing edges, detecting boundaries; compressing, storing and transmitting large
image files; interpolating and extrapolating tensor data; resampling data at
different resolutions (e.g., rebinning); extracting textural features, segment-
ing images, clustering data, and classifying tissues; and detecting statistical
outliers. The B-spline approximation provides the mathematical underpin-
nings for performing these tasks both rapidly and efficiently [10]. However,
the problem with it is that it introduces smoothing in the data uniformly
and isotropically and is incapable of dealing with discontinuities. The smaller
structures as well as sudden or rapid changes (edges, high curvatures, etc.) will
be distorted at the levels of approximation/smoothing required to alleviate the
noise effects. To achieve a more efficient approximation we use Non-Uniform
Rational B-Splines (NURBS). They allow for discontinuities and can describe
complex piecewise continuous geometrical shapes with many fewer parameters
than the original B-spline approximation.

Although there are other approaches for finding an approximate tensor
field, in this chapter we focus on a mathematical framework for continuous
approximation based on splines. A number of other methods for tensor field
approximation exist, for example see references [11, 12, 13, 14]. Also, Chap. 17
by Moakher and Batchelor and Chap. 19 by Weickert and Welk present
novel and sophisticated ways of interpolating and regularizing tensor fields.



