Abstract
In this paper, we consider a non-orthogonal multiple access system with imperfect successive interference cancellation and physical layer security where the source node communicates with Users via an energy harvesting relay node. This node uses a power-switching architecture to harvest energy from the sources signals and applies an amplify-and-forward protocol to forward signals. Moreover, the transmit jamming or artificial noise is generated by source node to enhance the security of system in the case an eavesdropper tries to overhear the confidential information from the source. To evaluate the secrecy performance of the proposed system, the asymptotic secrecy outage probability over the Rayleigh fading channel is studied. These results are compared with the secrecy performance of the orthogonal multiple access system and the system without the help of relay. Monte-Carlo results are presented to verify the theoretical results.
Similar content being viewed by others
References
Saito, Y., et al. (2013). Non-orthogonal multiple access (NOMA)for cellular future radio access, In Proceedings IEEE vehicular technology conference, Dresden, Germany, pp. 1–5.
Saito, Y., Benjebbour, A., Kishiyama, Y., & Nakamura, T. (2013). Systemlevel performance evaluation of downlink non-orthogonal multipleaccess (NOMA), In Proceedings of IEEE Annual Symposium PIMRC, London, U.K., pp. 611–615.
Ding, Z., Peng, M., & Poor, H. V. (2015). Cooperative non-orthogonal multiple access in 5G systems. IEEE Communications Letters, 19(8), 1462–1465.
Kim, J.-B., & Lee, I.-H. (2015). Non-orthogonal multiple access in coordinated direct and relay transmission. IEEE Communications Letters, 19(10), 1686–1689.
Kader, M. F., Shahab, M. B., & Shin, S. Y. (2017). Exploiting non-orthogonal multiple access in cooperative relay sharing. IEEE Communication Letters, 21, 1159–1162.
Raghunathan, V., Ganeriwal, S., & Srivastava, M. (2006). Emerging techniques for long lived wireless sensor networks. Communications Magazine, IEEe, 44(4), 108–114.
Paradiso, J., & Starner, T. (2005). Energy scavenging for mobile and wireless electronics. Pervasive Computing, IEEE, 4(1), 18–27.
Varshney, L. (2008). Transporting information and energy simultaneously, in Information Theory. In IEEE International Symposium on ISIT 2008, pp. 1612–1616.
Grover, P., & Sahai, A. (2010). Shannon meets Tesla: wireless information and power transfer. In Proceedingson IEEE ISIT.
Zhou, X., Zhang, R., & Ho, C. K.(2012). Wireless information and power transfer: Architecture design and rate-energy tradeoff.
Ali, A. (2013). Nasir and Salman Durrani, relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications, 12(7), 3622–3636.
Liu, Y., Ding, Z., Elkashlan, M., & Poor, H. V. (2015). Cooperative non-orthogonal multiple access in 5G systems with SWIPT, In The 23rd EUSIPCO.
Han, W., Ge, J., & Men, J. (2016). Performance analysis for NOMA energy harvesting relaying networks with transmit antenna selection and maximal-ratio combining over Nakagami-m fading. IET Communications, 10(18), 2687–2693.
Guo, W., & Wang, Y. (2017). Cooperative non-orthogonal multiple access with energy harvesting. Information, 8, 111. https://doi.org/10.3390/info8030111.
Wyner, A. (1975). The wire-tap channel. Bell System Technical Journal, 54(8), 1355–1387.
Ding, Z., Xu, M., Lu, J., & Liu, F. (2012). Improving wireless security for bidirectional communication scenarios. IEEE Transactions on Vehicular Technology, 61, 2842–2848.
Dong, L., Han, Z., Petropulu, A., & Poor, H. (2010). Improving wireless physical layer security via cooperating relays. IEEE Transactions on Signal Processing, 58(3), 1875–1888.
Wang, H.M., Yin, Q., & Xia, X.G. (2011) Improving the physical-layer security of wireless two-way relaying via analog network coding. In Global telecommunication conference (GLOBECOM 2011), 2011, IEEE
Chen, J., Song, L., Han, Z., & Jiao, B. (2011). Joint relay and jammer selection for secure decode-and-forward two-way relay communications. In Global telecommunication conference (GLOBECOM 2011), Houston, Texas, USA.
Kim, T.T., & Poor, H. Vincent. (2009). Secure relaying: can publicly transferred keys increase degrees of freedom? In 47th annual allerton conference, Monticello, IL, pp. 1076–1081.
Chang, S., Li, J., Xiaomei, F., & Zhang, L. (2017). Energy harvesting for physical layer security in cooperative networks based on compressed sensing. Entropy, 19, 462. https://doi.org/10.3390/e19090462.
Qin, Z., Liu, Y., Ding, Z., Gao, Y., & Elkashlan, M. (2016). Physical layer security for 5G non-orthogonal multiple access in large-scale networks, In IEEE ICC.
Gradshteyn, I. S., & Ryzhik, I. M. (2014). Table of intergrals, series, and products (8th ed.). Cambridge: Academic Press.
Funding
This work was supported by the 2019 Research Fund of the University of Ulsan.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendices
Appendix A Proof of Theorem 1 In (25)
This appendix derives \({P_{{SOP}_1}}\) in (25), at User 1 for NOMA-AF imperfect SIC with EH-relay and physical layer security.
According to (24), in the case that the SNR is very high, then \({m_5}<<{m_2}+{m_3}\); \(d_3^m\sigma _E^2< < P{\alpha _2} + P{\alpha _3}\) . Therefore, (22) can be rewritten as
where \(\beta _1^* = {\beta _1} + \left( {{\beta _1} + 1} \right) \frac{{{\alpha _1}}}{{{\alpha _2} + {\alpha _3}}}\).
In (36), the factor in the denominator, \({m_1} - {m_2}\beta _1^*\) , can be positive or negative; hence, we consider the following two cases.
+ In the case \(\beta _1^* > \frac{{{m_1}}}{{{m_2}}} = \frac{{{\alpha _1}}}{{{\alpha _2}}}\), from (36) we have the secrecy outage probability of U1 can be expressed as
+ In the case \(\beta _1^* \le \frac{{{m_1}}}{{{m_2}}} = \frac{{{\alpha _1}}}{{{\alpha _2}}}\), from (36) we have
We can express (38) as
Substituting the PDF of Y and the CDF of X given by (1) into (38), we have the following.
Using [ [23], Eq. (3.324.1)], the SOP of User 1 can be expressed as (25). This ends the proof of Theorem 1.
Appendix B Proof of Theorem 2 In (2)
This appendix shows how to find the expression of the SOP of User 2 in (29). The following expression from (29) is given as
Because \({m_1} - {\beta _{1t}}{m_2}\) and \({m_2} - \xi {m_1}{k_1}\)can be positive or negative, (41) is given as follows:
+ In the case \({\beta _{1t}}< \frac{{{m_1}}}{{{m_2}}} < \frac{1}{{\xi {k_1}}}\), (41) can be rewritten as
+ In the case \(\frac{{{m_1}}}{{{m_2}}} > m\mathrm{{ax}}\left\{ {{\beta _{1t}};\frac{1}{{\xi {k_1}}}} \right\}\) (41) can be expressed as
+ In the case \(\frac{{{m_1}}}{{{m_2}}} < \min \left\{ {{\beta _{1t}};\frac{1}{{\xi {k_1}}}} \right\}\) from (41) we have
+ In the case \(\frac{1}{{\xi {k_1}}}< \frac{{{m_1}}}{{{m_2}}} < {\beta _{1t}}\) we express (41) as
This ends the proof of Theorem 2.
Rights and permissions
About this article
Cite this article
Le, T.A., Kong, H.Y. Evaluating the Performance of Cooperative NOMA with Energy Harvesting Under Physical Layer Security. Wireless Pers Commun 108, 1037–1054 (2019). https://doi.org/10.1007/s11277-019-06452-5
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11277-019-06452-5