[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Evaluating the Performance of Cooperative NOMA with Energy Harvesting Under Physical Layer Security

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we consider a non-orthogonal multiple access system with imperfect successive interference cancellation and physical layer security where the source node communicates with Users via an energy harvesting relay node. This node uses a power-switching architecture to harvest energy from the sources signals and applies an amplify-and-forward protocol to forward signals. Moreover, the transmit jamming or artificial noise is generated by source node to enhance the security of system in the case an eavesdropper tries to overhear the confidential information from the source. To evaluate the secrecy performance of the proposed system, the asymptotic secrecy outage probability over the Rayleigh fading channel is studied. These results are compared with the secrecy performance of the orthogonal multiple access system and the system without the help of relay. Monte-Carlo results are presented to verify the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Saito, Y., et al. (2013). Non-orthogonal multiple access (NOMA)for cellular future radio access, In Proceedings IEEE vehicular technology conference, Dresden, Germany, pp. 1–5.

  2. Saito, Y., Benjebbour, A., Kishiyama, Y., & Nakamura, T. (2013). Systemlevel performance evaluation of downlink non-orthogonal multipleaccess (NOMA), In Proceedings of IEEE Annual Symposium PIMRC, London, U.K., pp. 611–615.

  3. Ding, Z., Peng, M., & Poor, H. V. (2015). Cooperative non-orthogonal multiple access in 5G systems. IEEE Communications Letters, 19(8), 1462–1465.

    Article  Google Scholar 

  4. Kim, J.-B., & Lee, I.-H. (2015). Non-orthogonal multiple access in coordinated direct and relay transmission. IEEE Communications Letters, 19(10), 1686–1689.

    Article  MathSciNet  Google Scholar 

  5. Kader, M. F., Shahab, M. B., & Shin, S. Y. (2017). Exploiting non-orthogonal multiple access in cooperative relay sharing. IEEE Communication Letters, 21, 1159–1162.

    Article  Google Scholar 

  6. Raghunathan, V., Ganeriwal, S., & Srivastava, M. (2006). Emerging techniques for long lived wireless sensor networks. Communications Magazine, IEEe, 44(4), 108–114.

    Article  Google Scholar 

  7. Paradiso, J., & Starner, T. (2005). Energy scavenging for mobile and wireless electronics. Pervasive Computing, IEEE, 4(1), 18–27.

    Article  Google Scholar 

  8. Varshney, L. (2008). Transporting information and energy simultaneously, in Information Theory. In IEEE International Symposium on ISIT 2008, pp. 1612–1616.

  9. Grover, P., & Sahai, A. (2010). Shannon meets Tesla: wireless information and power transfer. In Proceedingson IEEE ISIT.

  10. Zhou, X., Zhang, R., & Ho, C. K.(2012). Wireless information and power transfer: Architecture design and rate-energy tradeoff.

  11. Ali, A. (2013). Nasir and Salman Durrani, relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Wireless Communications, 12(7), 3622–3636.

    Article  Google Scholar 

  12. Liu, Y., Ding, Z., Elkashlan, M., & Poor, H. V. (2015). Cooperative non-orthogonal multiple access in 5G systems with SWIPT, In The 23rd EUSIPCO.

  13. Han, W., Ge, J., & Men, J. (2016). Performance analysis for NOMA energy harvesting relaying networks with transmit antenna selection and maximal-ratio combining over Nakagami-m fading. IET Communications, 10(18), 2687–2693.

    Article  Google Scholar 

  14. Guo, W., & Wang, Y. (2017). Cooperative non-orthogonal multiple access with energy harvesting. Information, 8, 111. https://doi.org/10.3390/info8030111.

    Article  Google Scholar 

  15. Wyner, A. (1975). The wire-tap channel. Bell System Technical Journal, 54(8), 1355–1387.

    Article  MathSciNet  MATH  Google Scholar 

  16. Ding, Z., Xu, M., Lu, J., & Liu, F. (2012). Improving wireless security for bidirectional communication scenarios. IEEE Transactions on Vehicular Technology, 61, 2842–2848.

    Article  Google Scholar 

  17. Dong, L., Han, Z., Petropulu, A., & Poor, H. (2010). Improving wireless physical layer security via cooperating relays. IEEE Transactions on Signal Processing, 58(3), 1875–1888.

    Article  MathSciNet  MATH  Google Scholar 

  18. Wang, H.M., Yin, Q., & Xia, X.G. (2011) Improving the physical-layer security of wireless two-way relaying via analog network coding. In Global telecommunication conference (GLOBECOM 2011), 2011, IEEE

  19. Chen, J., Song, L., Han, Z., & Jiao, B. (2011). Joint relay and jammer selection for secure decode-and-forward two-way relay communications. In Global telecommunication conference (GLOBECOM 2011), Houston, Texas, USA.

  20. Kim, T.T., & Poor, H. Vincent. (2009). Secure relaying: can publicly transferred keys increase degrees of freedom? In 47th annual allerton conference, Monticello, IL, pp. 1076–1081.

  21. Chang, S., Li, J., Xiaomei, F., & Zhang, L. (2017). Energy harvesting for physical layer security in cooperative networks based on compressed sensing. Entropy, 19, 462. https://doi.org/10.3390/e19090462.

    Article  Google Scholar 

  22. Qin, Z., Liu, Y., Ding, Z., Gao, Y., & Elkashlan, M. (2016). Physical layer security for 5G non-orthogonal multiple access in large-scale networks, In IEEE ICC.

  23. Gradshteyn, I. S., & Ryzhik, I. M. (2014). Table of intergrals, series, and products (8th ed.). Cambridge: Academic Press.

    Google Scholar 

Download references

Funding

This work was supported by the 2019 Research Fund of the University of Ulsan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thi Anh Le.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A Proof of Theorem 1 In (25)

This appendix derives \({P_{{SOP}_1}}\) in (25), at User 1 for NOMA-AF imperfect SIC with EH-relay and physical layer security.

According to (24), in the case that the SNR is very high, then \({m_5}<<{m_2}+{m_3}\); \(d_3^m\sigma _E^2< < P{\alpha _2} + P{\alpha _3}\) . Therefore, (22) can be rewritten as

$$\begin{aligned} {P_{SO{P_1}}}&= \Pr \left( {\tfrac{{{m_1}g_0^{}{g_1}}}{{{m_2}g_0^{}{g_1} + {m_3}{g_1} + {m_4}}}< {\beta _1} + \left( {{\beta _1} + 1} \right) \tfrac{{P{\alpha _1}}}{{P{\alpha _2} + P{\alpha _3}}}} \right) \nonumber \\&= \Pr \left( {\frac{{{m_1}g_0^{}{g_1}}}{{{m_2}g_0^{}{g_1} + {m_3}{g_1} + {m_4}}}< \beta _1^*} \right) \nonumber \\&= \Pr \left[ {\left( {{m_1} - {m_2}\beta _1^*} \right) g_0^{}{g_1} < \beta _1^*{m_3}{g_1} + \beta _1^*{m_4}} \right] \end{aligned}$$
(36)

where \(\beta _1^* = {\beta _1} + \left( {{\beta _1} + 1} \right) \frac{{{\alpha _1}}}{{{\alpha _2} + {\alpha _3}}}\).

In (36), the factor in the denominator, \({m_1} - {m_2}\beta _1^*\) , can be positive or negative; hence, we consider the following two cases.

+ In the case \(\beta _1^* > \frac{{{m_1}}}{{{m_2}}} = \frac{{{\alpha _1}}}{{{\alpha _2}}}\), from (36) we have the secrecy outage probability of U1 can be expressed as

$$\begin{aligned} {P_{SO{P_1}}} = \Pr \left[ {g_0^{}{g_1} > \underbrace{\frac{{\beta _1^*{m_3}{g_1} + \beta _1^*{m_4}}}{{{m_1} - {m_2}\beta _1^*}}}_{ < 0}} \right] = 1 \end{aligned}$$
(37)

+ In the case \(\beta _1^* \le \frac{{{m_1}}}{{{m_2}}} = \frac{{{\alpha _1}}}{{{\alpha _2}}}\), from (36) we have

$$\begin{aligned} {P_{SO{P_1}}} = \Pr \left[ {g_0^{} < {A_1} + \frac{{{A_2}}}{{{g_1}}}} \right] \end{aligned}$$
(38)

We can express (38) as

$$\begin{aligned} {P_{SO{P_1}}} = \int \limits _0^{ + \infty } {{f_Y}\left( y \right) } \Pr \left[ {X < \left( {{A_1} + {A_2}\frac{1}{y}} \right) } \right] dy \end{aligned}$$
(39)

Substituting the PDF of Y and the CDF of X given by (1) into (38), we have the following.

$$\begin{aligned} {P_{SO{P_1}}}&= \int \limits _0^{ + \infty } {{\lambda _1}{e^{ - {\lambda _1}y}}} \Pr \left[ {X < \left( {{A_1} + {A_2}\frac{1}{y}} \right) } \right] dy\nonumber \\&= \int \limits _0^{ + \infty } {{\lambda _1}{e^{ - {\lambda _1}y}}} {F_X}\left( {{A_1} + {A_2}\frac{1}{y}} \right) dy\nonumber \\&= \int \limits _0^{ + \infty } {{\lambda _1}{e^{ - {\lambda _1}y}}\left( {1 - {e^{ - {\lambda _0}\left( {{A_1} + {A_2}\frac{1}{y}} \right) }}} \right) } dy\nonumber \\&= {\lambda _1}\int \limits _0^{ + \infty } {{e^{ - {\lambda _1}y}}dy - } {\lambda _1}{e^{ - {\lambda _0}{A_1}}}\int \limits _0^{ + \infty } {{e^{ - \left( {{\lambda _1}y + {\lambda _0}{A_2}\frac{1}{y}} \right) }}} dy\nonumber \\&= 1 - {\lambda _1}{e^{ - {\lambda _0}{A_1}}}\int \limits _0^{ + \infty } {{e^{ - \left( {{\lambda _1}y + {\lambda _0}{A_2}\frac{1}{y}} \right) }}} dy \end{aligned}$$
(40)

Using [ [23], Eq. (3.324.1)], the SOP of User 1 can be expressed as (25). This ends the proof of Theorem 1.

Appendix B Proof of Theorem 2 In (2)

This appendix shows how to find the expression of the SOP of User 2 in (29). The following expression from (29) is given as

$$\begin{aligned} {P_{SO{P_2}}} =&\Pr \left[ \begin{array}{l} \frac{{{m_1}{g_0}{g_2}}}{{{m_2}{g_0}{g_2} + {m_3}{g_2} + {m_6}}}> {\beta _{1t}},\\ \frac{{1 + \frac{{{m_2}{g_0}{g_2}}}{{\xi {m_1}{g_0}{g_2} + {m_3}{g_2} + {m_6}}}}}{{1 + \frac{{{\alpha _2}}}{{\xi {\alpha _1} + {\alpha _3}}}}}< {\beta _2} \end{array} \right] \nonumber \\&+\Pr \left[ {\frac{{{m_1}{g_0}{g_2}}}{{{m_2}{g_0}{g_2} + {m_3}{g_2} + {m_6}}}< {\beta _{1t}}} \right] \nonumber \\ =&\Pr \left[ \begin{array}{l} \left( {{m_1} - {\beta _{1t}}{m_2}} \right) {g_0} > {m_3}{\beta _{1t}} + \frac{{{m_6}{\beta _{1t}}}}{{{g_2}}},\\ \left( {{m_2} - \xi {m_1}{k_1}} \right) {g_0}< {m_3}{k_1} + \frac{{{m_6}{k_1}}}{{{g_2}}} \end{array} \right] \nonumber \\&+ \Pr \left[ {\left( {{m_1} - {\beta _{1t}}{m_2}} \right) {g_0} < {m_3}{\beta _{1t}} + \frac{{{m_6}{\beta _{1t}}}}{{{g_2}}}} \right] \end{aligned}$$
(41)

Because \({m_1} - {\beta _{1t}}{m_2}\) and \({m_2} - \xi {m_1}{k_1}\)can be positive or negative, (41) is given as follows:

+ In the case \({\beta _{1t}}< \frac{{{m_1}}}{{{m_2}}} < \frac{1}{{\xi {k_1}}}\), (41) can be rewritten as

$$\begin{aligned} {P_{sout2}} =&\Pr \left[ \begin{array}{l} \frac{{{m_3}{\beta _{1t}}}}{{{m_1} - {\beta _{1t}}{m_2}}} + \frac{{{m_6}{\beta _{1t}}}}{{\left( {{m_1} - {\beta _{1t}}{m_2}} \right) {g_2}}}< {g_0}\ {g_0}< \frac{{{m_3}{k_1}}}{{{m_2} - \xi {m_1}{k_1}}} + \frac{{{m_6}{k_1}}}{{\left( {{m_2} - \xi {m_1}{k_1}} \right) {g_2}}} \end{array} \right] \nonumber \\&+ \Pr \left[ {{g_0}< \frac{{{m_3}{\beta _{1t}}}}{{{m_1} - {\beta _{1t}}{m_2}}} + \frac{{{m_6}{\beta _{1t}}}}{{\left( {{m_1} - {\beta _{1t}}{m_2}} \right) {g_2}}}} \right] \nonumber \\ =&\Pr \left[ {{A_3} + \frac{{{A_4}}}{{{g_2}}}< {g_0}< {A_5} + \frac{{{A_6}}}{{{g_2}}}} \right] +\nonumber \\&\Pr \left[ {{g_0} < {A_3} + \frac{{{A_4}}}{{{g_2}}}} \right] \nonumber \\ =&\int \limits _0^{ + \infty } {{\lambda _2}{e^{ - {\lambda _2}y}}} \left[ {{F_X}\left( {{A_5} + \tfrac{{{A_6}}}{y}} \right) - {F_X}\left( {{A_3} + \tfrac{{{A_4}}}{y}} \right) } \right] dy\nonumber \\&+ \int \limits _0^{ + \infty } {{\lambda _2}{e^{ - {\lambda _2}y}}} {F_X}\left( {{A_3} + \tfrac{{{A_4}}}{y}} \right) dy\nonumber \\ =&\int \limits _0^{ + \infty } {{\lambda _2}{e^{ - {\lambda _2}y}}} {F_X}\left( {{A_5} + \tfrac{{{A_6}}}{y}} \right) dy\nonumber \\ =&1 - {\lambda _2}{e^{ - {\lambda _0}{A_5}}}\sqrt{\tfrac{{4{\lambda _0}{A_6}}}{{{\lambda _2}}}} {K_1}\left( {\sqrt{4{\lambda _0}{\lambda _2}{A_6}} } \right) \end{aligned}$$
(42)

+ In the case \(\frac{{{m_1}}}{{{m_2}}} > m\mathrm{{ax}}\left\{ {{\beta _{1t}};\frac{1}{{\xi {k_1}}}} \right\}\) (41) can be expressed as

$$\begin{aligned} {P_{sout2}} =&\Pr \left[ \begin{array}{l} {g_0}> \frac{{{m_3}{\beta _{1t}}}}{{{m_1} - {\beta _{1t}}{m_2}}} + \frac{{{m_6}{\beta _{1t}}}}{{\left( {{m_1} - {\beta _{1t}}{m_2}} \right) {g_2}}},\\ {g_0} > \underbrace{\frac{{{m_3}{k_1}}}{{{m_2} - \xi {m_1}{k_1}}} + \frac{{{m_6}{k_1}}}{{\left( {{m_2} - \xi {m_1}{k_1}} \right) {g_2}}}}_{< 0} \end{array} \right] \nonumber \\&+ \Pr \left[ {{g_0}< \frac{{{m_3}{\beta _{1t}}}}{{{m_1} - {\beta _{1t}}{m_2}}} + \frac{{{m_6}{\beta _{1t}}}}{{\left( {{m_1} - {\beta _{1t}}{m_2}} \right) {g_2}}}} \right] \nonumber \\ =&\Pr \left[ {{A_3} + \frac{{{A_4}}}{{{g_2}}}< {g_0}} \right] + \Pr \left[ {{g_0} < {A_3} + \frac{{{A_4}}}{{{g_2}}}} \right] \nonumber \\ =&1 \end{aligned}$$
(43)

+ In the case \(\frac{{{m_1}}}{{{m_2}}} < \min \left\{ {{\beta _{1t}};\frac{1}{{\xi {k_1}}}} \right\}\) from (41) we have

$$\begin{aligned} {P_{sout2}} =&\Pr \left[ \begin{array}{l} {g_0}< \underbrace{\frac{{{m_3}{\beta _{1t}}}}{{{m_1} - {\beta _{1t}}{m_2}}} + \frac{{{m_6}{\beta _{1t}}}}{{\left( {{m_1} - {\beta _{1t}}{m_2}} \right) {g_2}}}}_{< 0},\\ {g_0}< \underbrace{\frac{{{m_3}{k_1}}}{{{m_2} - \xi {m_1}{k_1}}} + \frac{{{m_6}{k_1}}}{{\left( {{m_2} - \xi {m_1}{k_1}} \right) {g_2}}}}_{> 0} \end{array} \right] \nonumber \\&+ \Pr \left[ {{g_0} > \underbrace{\frac{{{m_3}{\beta _{1t}}}}{{{m_1} - {\beta _{1t}}{m_2}}} + \frac{{{m_6}{\beta _{1t}}}}{{\left( {{m_1} - {\beta _{1t}}{m_2}} \right) {g_2}}}}_{ < 0}} \right] \nonumber \\ =&0 + 1 = 1 \end{aligned}$$
(44)

+ In the case \(\frac{1}{{\xi {k_1}}}< \frac{{{m_1}}}{{{m_2}}} < {\beta _{1t}}\) we express (41) as

$$\begin{aligned} {P_{sout2}} =&\Pr \left[ \begin{array}{l} {g_0}< \underbrace{\frac{{{m_3}{\beta _{1t}}}}{{{m_1} - {\beta _{1t}}{m_2}}} + \frac{{{m_6}{\beta _{1t}}}}{{\left( {{m_1} - {\beta _{1t}}{m_2}} \right) {g_2}}}}_{< 0}, \\ {g_0}< \underbrace{\frac{{{m_3}{k_1}}}{{{m_2} - \xi {m_1}{k_1}}} + \frac{{{m_6}{k_1}}}{{\left( {{m_2} - \xi {m_1}{k_1}} \right) {g_2}}}}_{< 0} \end{array} \right] \nonumber \\&+ \Pr \left[ {{g_0} > \underbrace{\frac{{{m_3}{\beta _{1t}}}}{{{m_1} - {\beta _{1t}}{m_2}}} + \frac{{{m_6}{\beta _{1t}}}}{{\left( {{m_1} - {\beta _{1t}}{m_2}} \right) {g_2}}}}_{ < 0}} \right] \nonumber \\ =&0 + 1 = 1 \end{aligned}$$
(45)

This ends the proof of Theorem 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, T.A., Kong, H.Y. Evaluating the Performance of Cooperative NOMA with Energy Harvesting Under Physical Layer Security. Wireless Pers Commun 108, 1037–1054 (2019). https://doi.org/10.1007/s11277-019-06452-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-019-06452-5

Keywords

Navigation