[go: up one dir, main page]
More Web Proxy on the site http://driver.im/
Skip to main content

Advertisement

A Neurodynamic Algorithm for Energy Scheduling Game in Microgrid Distribution Networks

  • Published:
Neural Processing Letters Aims and scope Submit manuscript

Abstract

In this paper, a competitive energy scheduling strategy game of N-microgrids (MGs) inside a distributed network is considered. Each microgrid (MG) aims to maximize its profit under the noncooperative game frame. The strategy-making of each MG depends on its equipment constraints, the aggregate energy supplies of all MGs, and the energy balance of supplies and demands. To solve above discussed problem, a noncooperative game with linear coupled constraints and a distributed neurodynamic algorithm are proposed to seek the generalized Nash equilibrium (GNE). Besides, the correctness and convergence of the proposed algorithm are analyzed in detail. The effectiveness and feasibility of the proposed method are also illustrated via the simulation example.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Wen S, Xiong W, Cao J et al (2020) MPC-based frequency control strategy with a dynamic energy interaction scheme for the grid-connected microgrid system. J Franklin Inst 357(5):2736–2751

    Article  MathSciNet  Google Scholar 

  2. Chen T, Jiang Y, Wang J et al (2020) Maintenance personnel detection and analysis using mask-RCNN optimization on power grid monitoring video. Neural Process Lett 51:1599–1610

    Article  Google Scholar 

  3. Nazari-Heris M, Abapour S, Mohammadi-Ivatloo B (2017) Optimal economic dispatch of FC-CHP based heat and power micro-grids. Appl Therm Eng 114:756–769

    Article  Google Scholar 

  4. Sardou IG, Zare M, Azad-Farsani E (2018) Robust energy management of a microgrid with photovoltaic inverters in VAR compensation mode. Int J Electr Power Energy Syst 98:118–132

    Article  Google Scholar 

  5. Elsied M, Oukaour A, Gualous H et al (2015) Energy management and optimization in microgrid system based on green energy. Energy 84:139–151

    Article  Google Scholar 

  6. Liu Y, Li Y, Gooi HB et al (2019) Distributed robust energy management of a multi-microgrid system in the real-time energy market. IEEE Trans Sustain Energy 10(1):396–406

    Article  Google Scholar 

  7. Liu Q, Le X, Li K (2019) A distributed optimization algorithm based on multiagent network for economic dispatch with region partitioning. IEEE Trans Cybern. https://doi.org/10.1109/TCYB.2019.2948424

    Article  Google Scholar 

  8. Le X, Chen S, Li F et al (2019) Distributed neurodynamic optimization for energy internet management. IEEE Trans Syst Man Cybern Syst 49(8):1624–1633

    Article  Google Scholar 

  9. Wang R, Li Q, Zhang B et al (2019) Distributed consensus based algorithm for economic dispatch in a microgrid. IEEE Trans Smart Grid 10(4):3630–3640

    Article  Google Scholar 

  10. Li D, Deng L, Su Q et al (2020) Multimedia imaging model of information system based on self-organizing capsule neural network and game theory. Neural Process Lett. https://doi.org/10.1007/s11063-020-10258-z

    Article  Google Scholar 

  11. Barrera J, Garcia A (2015) Dynamic incentives for congestion control. IEEE Trans Autom Control 60(2):299–310

    Article  MathSciNet  Google Scholar 

  12. Grammatico S (2017) Dynamic control of agents playing aggregative games with coupling constraints. IEEE Trans Autom Control 62(9):4537–4548

    Article  MathSciNet  Google Scholar 

  13. Wen S, Chen J, Wu Y (2020) CKFO: convolutional kernel first operated algorithm with applications in memristor-based convolutional neural networks. IEEE Trans Comput Aided Des Integr Circuits Syst. https://doi.org/10.1109/TCAD.2020.3019993

    Article  Google Scholar 

  14. Li YZ, Zhao T, Wang P, Gooi H, Wu L, Liu Y, Ye J (2018) Cooperative operation of multi-microgrids via cooperative energy and reserve scheduling. IEEE Trans Ind Inf 14(8):3459–3468

    Article  Google Scholar 

  15. Ye M, Hu G (2017) Game design and analysis for price-based demand response: an aggregate game approach. IEEE Trans Cybern 47(3):720–730

    Article  Google Scholar 

  16. Liu Z, Wu Q, Huang S et al (2018) Optimal day-ahead charging scheduling of electric vehicles through an aggregative game model. IEEE Trans Smart Grid 9(5):5173–5184

    Article  Google Scholar 

  17. Rockafellar RT, Wets RJB (1998) Variational analysis, volume 317 of Grundlehren der Mathematischen Wissenschaften. Fundamental Principles of Mathematical Sciences

  18. West DB (2001) Introduction to graph theory. Prentice Hall, Upper Saddle River

    Google Scholar 

  19. Wen S, He X, Huang T (2020) Distributed neuro-dynamic algorithm for price-based game in energy consumption system. Neural Process Lett 51(1):559–575

    Article  Google Scholar 

  20. Facchinei F, Pang JS (2003) Finite-dimensional variational inequalities and complementarity problems. Springer, Berlin

    MATH  Google Scholar 

  21. Li C, Yu X, Huang T et al (2018) Distributed optimal consensus over resource allocation network and its application to dynamical economic dispatch. IEEE Trans Neural Netw Learn Syst 29(6):2407–2418

    Article  Google Scholar 

  22. Liu W, Gu W, Wang J et al (2018) Game theoretic non-cooperative distributed coordination control for multi-microgrids. IEEE Trans Smart Grid 9(6):6986–6997

    Article  Google Scholar 

  23. Fu Y, Zhang Z, Li Z et al (2020) Energy management for hybrid AC/DC distribution system with microgrid clusters using non-cooperative game theory and robust optimization. IEEE Trans Smart Grid 11(2):1510–1525

    Article  Google Scholar 

  24. Nojavan S, Zare K, Mohammadi-Ivatloo B (2017) Application of fuel cell and electrolyzer as hydrogen energy storage system in energy management of electricity energy retailer in the presence of the renewable energy sources and plug-in electric vehicles. Energy Convers Manag 136:404–417

    Article  Google Scholar 

  25. Li C, Dong Z, Chen G et al (2018) Data-driven planning of electric vehicle charging infrastructure: a case study of Sydney. IEEE Transactions on Smart Grid, Australia. https://doi.org/10.1109/TSG.2021.3054763

    Book  Google Scholar 

  26. Wen S, Xiong W, Tan J et al (2021) Blockchain enhanced price incentive demand response for building user energy network in sustainable society. Sustain Cities Soc. https://doi.org/10.1016/j.scs.2021.102748

    Article  Google Scholar 

  27. Liang S, Yi P, Hong Y (2017) Distributed Nash equilibrium seeking for aggregative games with coupled constraints. Automatica 85:179–185

    Article  MathSciNet  Google Scholar 

  28. Di MM, Forti M, Nistri P et al (2016) Discontinuous neural networks for finite-time solution of time-dependent linear equations. IEEE Trans Cybern 46(11):2509–2520

    Article  Google Scholar 

  29. Tian Y, Wang Z (2021) Composite slack-matrix-based integral inequality and its application to stability analysis of time-delay systems. Appl Math Lett. https://doi.org/10.1016/j.aml.2021.107252

    Article  MathSciNet  MATH  Google Scholar 

  30. Le X, Yan Z, Xi J (2017) A collective neurodynamic system for distributed optimization with applications in model predictive control. IEEE Trans Emerg Top Comput Intell 1(4):305–314

    Article  Google Scholar 

  31. Li Z, Xu Y (2018) Optimal coordinated energy dispatch of a multi-energy microgrid in grid-connected and islanded modes. Appl Energy 210:974–986

    Article  Google Scholar 

  32. Chen J, Wu Y, Yang Y et al (2020) An efficient memristor-based circuit implementation of squeeze-and-excitation fully convolutional neural networks. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2020.3044047

    Article  Google Scholar 

  33. Wen S, Ni X, Wang H (2021) Observer-based adaptive control for multiagent systems with unknown parameters under attacks. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2021.3051017

    Article  Google Scholar 

  34. Tan G, Wang Z, Li C (2020) H$infty $ performance state estimation of delayed static neural networks based on an improved proportional-integral estimator. Appl Math Comput. https://doi.org/10.1016/j.amc.2019.124908

    Article  MATH  Google Scholar 

  35. Ding S, Xie X, Wang Z (2021) Periodic event-triggered synchronization for discrete-time complex dynamical networks. IEEE Trans Neural Netw Learn Syst. https://doi.org/10.1109/TNNLS.2021.3053652

    Article  Google Scholar 

  36. Ding S, Wang Z, Rong N (2021) Intermittent control for quasi-synchronization of delayed discrete-time neural networks. IEEE Trans Cybern 51(2):862–873

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by Natural Science Foundation of China (Grant Nos: 61773320), Fundamental Research Funds for the Central Universities (Grant No. XDJK2020TY003), and also supported by the Natural Science Foundation Project of Chongqing CSTC (Grant No. cstc2018jcyjAX0583).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendices

1.1 Appendix A: Proof of Lemma 3

Proof

Since the Assumption 1 and the conditions of \(\alpha \), \({\tilde{\psi }}_1\) are satisfied, and \(\kappa _i\left( t \right) \) is strictly continuous, \(\sum _{i=1}^N{{\dot{\kappa }}_i\left( t \right) }=0\) is satisfied for all \(t\geqslant 0\) such that \(\sum _{i=1}^N{{\dot{\kappa }}_i\left( 0 \right) }=0\), then, there is \(\sum _{i=1}^N{\omega _i\left( t \right) }=\sum _{i=1}^N{M^TP_i}\left( t \right) \). Furthermore, it is easy to obtain

$$\begin{aligned}&\left( 1 \right) \;\sum _{i=1}^N{\omega _i}\sum _{j\in {\mathbb {N}},j\ne i}{\text {sgn} \left( \omega _j-\omega _i \right) }=\frac{1}{2}\sum _{\left( i,j \right) \in {\mathbb {E}}\left( t \right) }{\left| \omega _i-\omega _j \right| };\\&\left( 2 \right) \;\left| \kappa _q-\kappa _l \right| \leqslant \frac{1}{2}\sum _{\left( i,j \right) \in {\mathbb {E}}\left( t \right) }{\left| \omega _i-\omega _j \right| }\; {\textit{for any}}\; q\geqslant \text {1 }\;{\textit{and}}\; l\leqslant N; \\&\left( 3 \right) \; \sum _{i=1}^N{\left| \omega _i-\frac{1}{N}{\mathbf {1}}^T\omega \right| }\leqslant \frac{1}{N}\sum _{i=1}^N{\sum _{j=\text {1,}j\ne i}^N{\left| \omega _i-\omega _j \right| }} \\&\qquad \qquad \qquad \quad \qquad \qquad \quad \leqslant \frac{N-1}{2}\sum _{\left( i,j \right) \in {\mathbb {E}}\left( t \right) }{\left| \omega _i-\omega _j \right| }. \end{aligned}$$

Let \(\varsigma \left( t \right) \triangleq \max \sum _{\left( i,j \right) \in {\mathbb {E}}\left( t \right) }{\left| \omega _i-\omega _j \right| }\ \) and \(\omega \left( t \right) =\frac{1}{2}\Vert \omega \left( t \right) -\frac{1}{N}{{\mathbf {1}}}{{\mathbf {1}}}^T\omega \left( t \right) \Vert ^2\). Then, for all \(t\geqslant 0\), there is [32, 33]

$$\begin{aligned} \begin{aligned} \omega \left( t \right) \ne \text {0, }\,{\dot{\omega }}\left( t \right)&\leqslant -\frac{\alpha -\left( N-1 \right) {\tilde{\psi }}_1}{2}\sum _{\left( i,j \right) \in {\mathbb {E}}\left( t \right) }{\left| \omega _i-\omega _j \right| } \\&\leqslant -\left( \alpha -\left( N-1 \right) {\tilde{\psi }}_1 \right) \varsigma \left( t \right) \leqslant 0 \end{aligned} \end{aligned}$$
(30)

where \(\varsigma \left( t \right) \geqslant 0\) is completely continuous and \(\left( \alpha -\left( N-1 \right) {\tilde{\psi }}_1 \right) \) \( \int _0^{+\infty }{\varsigma \left( t \right) }\leqslant \omega \left( 0 \right) <+\infty ,\ \varsigma \left( t \right) \rightarrow 0\) as \(t\rightarrow +\infty \). Then, for \(t\geqslant {\hat{t}}\) and \({\hat{t}}\) is sufficient large, there is \(\omega \left( t \right) \leqslant \varsigma \left( t \right) \) and \({\dot{\omega }}\left( t \right) \leqslant \left( \alpha -\left( N-1 \right) {\tilde{\psi }}_1 \right) \omega \left( t \right) \), the prove is completed. \(\square \)

1.2 Appendix B: Proof of Lemma 5

If there is \(\varXi ^+\times \varPsi ^+\ne \varnothing \), then, for any \(\left( P^+,{\tilde{\lambda }}^+ \right) \in \varXi ^+\times \varPsi ^+\), \(\left\{ t_{\iota } \right\} _{\iota =1}^{+\infty }\) exists such that \(\lim _{\iota \rightarrow +\infty }P\left( t_{\iota } \right) =P^+\) and \(\lim _{\iota \rightarrow +\infty }{\tilde{\lambda }}\left( t_{\iota } \right) ={\tilde{\lambda }}^+\) [29, 34]. Taking the the limit of \(t_{\iota }\) into Eqs. (22) and (27), we can get \(\left( P^+,{\tilde{\lambda }}^+ \right) \) is the solution of Eq. (28) according to the Lemma 2, and the prove is completed.

1.3 Appendix C: Proof of Theorem 1

Sufficiency. If \(\left( {\tilde{\lambda }}^*,P^* \right) \in \varXi ^*\times \varPsi ^*\), then, \(P^*\in \varPi \) according to the definition of projection in the Sect. 2.2. We can also get \(P^*\in \varPi ^*\cap {\mathcal {K}}^*\) since \({\mathbb {M}}^{\text {T}}P^*-D=0\). From Lemma 1, \(P^*\in {\textit{SOL}}\left( \varPi ,\ \nabla _PF+\frac{\varrho }{N}M{\tilde{\lambda }}^* \right) \), i.e., \(P^*\) is the GNE.

Necessity, If the \(P^*\) is the GNE, it seems easy to claim that there exist \({\tilde{\lambda }}^*\) and

$$\begin{aligned} -\nabla _PF\left( P^* \right) \in \frac{\varrho }{N}M{\tilde{\lambda }}^*+\varLambda _{\varPi }\left( P^* \right) \end{aligned}$$
(31)

with the following conditions satisfied [35, 36]

  1. (1)

    \(\forall i\in {\mathbb {N}}\), \(F_i\) is twice continuously differentiable;

  2. (2)

    \(\nabla _PF\) is strictly monotone;

  3. (3)

    \(\varPi \) is compact and convex;

  4. (4)

    \(0\in {\textit{rint}}\left( \varPi -{\mathcal {K}} \right) \).

There exist a vector \(\theta \in R^{2N}\) such that

$$\begin{aligned}&\theta ^T\nabla _PF\left( P^* \right) <0 \end{aligned}$$
(32a)
$$\begin{aligned}&{\mathbb {M}}^{\text {T}}\theta =0 \end{aligned}$$
(32b)
$$\begin{aligned}&\vartheta ^T\theta \leqslant \text {0, }\quad \forall \vartheta \in \varLambda _{\varPi }\left( P^* \right) \end{aligned}$$
(32c)

then, from (32b) and (32c), \(\theta \in \varGamma _{\varPi }\left( P^* \right) \cap \varGamma _{{\mathcal {K}}}\left( P^* \right) =\varGamma _{\varPi \cap {\mathcal {K}}}\left( P^* \right) \). According the definition of the tangent tone, there exist \(P_{\epsilon }\in \varPi \cap {\mathcal {K}}\) and \(t_{\epsilon }>0\) such that \(P_{\epsilon }\rightarrow P^*,\ t_{\epsilon }\rightarrow \text {0, }\,and\ \lim _{\epsilon \rightarrow \infty } \frac{P_{\epsilon }-P^*}{\ t_{\epsilon }}=\theta \). Therefor

$$\begin{aligned} \theta ^T\nabla _PF\left( P^* \right) =\lim _{\epsilon \rightarrow \infty } \frac{\left( P_{\epsilon }-P^* \right) ^T\nabla _PF\left( P^* \right) }{t_{\epsilon }} \end{aligned}$$
(33)

which conflicts with (32a), the prove is completed, the \(P^*\) is the unique GNE.

1.4 Appendix D: Proof of Theorem 2

For all \(t>0\), there is \({\dot{P}}\in \varGamma _{\varPi }\left( P \right) ,\, P\left( t \right) \in \varPi \), and we also get

$$\begin{aligned} {\dot{P}}_i\left( t \right) ={\textit{Pre}}_{\varPi _i}\left( P_i-\nabla _{P_i}F_i\left( P_i,P_{-i} \right) -\frac{\varrho }{N}M\lambda _i \right) -P_i\left( t \right) +\phi _i\left( t \right) \end{aligned}$$
(34)

where

$$\begin{aligned} \Vert \phi _i\left( t \right) \Vert&=\left\| {\textit{Pre}}_{\varPi _i}\left( P_i-\nabla _{P_i}F_i\left( P_i,\varTheta \left( P \right) \right) -\frac{\varrho }{N}M{\tilde{\lambda }}_i \right) \right. \nonumber \\&\quad \left. -{\textit{Pre}}_{\varPi _i}\left( P_i-\nabla _{P_i}F_i\left( P_i,P_{-i} \right) -\frac{\varrho }{N}M\lambda _i \right) \right\| \nonumber \\&\leqslant {\hat{\alpha }}\left( \Vert \varTheta \left( P \right) -\omega _i\left( t \right) \Vert +\Vert {\tilde{\lambda }}\left( t \right) -\lambda \left( t \right) \Vert \right) \end{aligned}$$
(35)

for some \({\hat{\alpha }}>0\) and defining \(\phi \left( t \right) =\left( \phi _{1}^{T}\left( t \right) ,\ldots ,\phi _{N}^{T}\left( t \right) \right) ^T\), then, \(\phi \left( t \right) \) reduces exponentially based on the Lemma 2.

Let \(\chi \left( t \right) =\left[ \begin{array}{c} P\left( t \right) \\ {\tilde{\lambda }}\left( t \right) \\ \end{array} \right] \), \(\nabla _P{\tilde{F}}\left( \chi \right) =\left[ \begin{array}{c} \nabla _PF+\frac{\varrho }{N}M{\tilde{\lambda }}\\ -\frac{\varrho }{N}\left( {\mathbb {M}}^{\text {T}}P-D \right) \\ \end{array} \right] \), \({\mathscr {A}}=\varPi \times R\), \({\tilde{\nu }}\left( \chi \right) ={\textit{Pre}}_{{\mathscr {A}}}\left( \chi -\nabla _P{\tilde{F}}\left( \chi \right) \right) \) and \(\chi ^*\in \varXi ^*\times \varPsi ^*\). Then, the Lyapunov function can be formulated as:

$$\begin{aligned} V\left( t \right) =\left( \chi -{\tilde{\nu }}\left( \chi \right) \right) ^T\nabla _P{\tilde{F}}\left( \chi \right) -\frac{1}{2}\Vert \chi -{\tilde{\nu }}\left( \chi \right) \Vert ^2+\frac{1}{2}\Vert \chi -\chi ^* \Vert ^2 \end{aligned}$$
(36)

It is easy to get \(V\left( t \right) \geqslant 0\). Moreover, the gradient of \(V\left( t \right) \) is as follows

$$\begin{aligned} {\dot{V}}\left( t \right) =\left( \nabla _{\chi }V \right) ^T{\dot{\chi }}\left( t \right) =\left( \nabla _{\chi }V \right) ^T\left( {\tilde{\nu }}\left( \chi \right) -\chi \right) +{\tilde{\phi }}\left( t \right) \end{aligned}$$
(37)

where \({\tilde{\phi }}\left( t \right) =\left[ \begin{matrix} \phi \left( t \right) ,&{} 0\\ \end{matrix} \right] ^T\nabla _{\chi }V\). \(\varPi \) is bounded and according Lemma 4, \(\phi \left( t \right) \) converges exponentially, then, \(\Vert {\tilde{\lambda }}\left( t \right) \Vert \geqslant {\tilde{\alpha }}_1+{\tilde{\alpha }}_2t\) and \(\Vert {\tilde{\phi }}\left( t \right) \Vert \leqslant \left( {\tilde{\alpha }}_3+t{\tilde{\alpha }}_4 \right) e^{-{\tilde{\alpha }}_5t}\) for some constants \({\tilde{\alpha }}_1,\ {\tilde{\alpha }}_2,\ {\tilde{\alpha }}_3,\ {\tilde{\alpha }}_4,\ {\tilde{\alpha }}_5>0\). Hence,

$$\begin{aligned}&\int _0^{+\infty }{\Vert {\tilde{\phi }}\left( t \right) \Vert }dt<+\infty \end{aligned}$$
(38)
$$\begin{aligned}&{\dot{V}}\left( t \right) \leqslant -\left( \chi -\chi ^* \right) ^T\left( \nabla _P{\tilde{F}}\left( \chi \right) -\nabla _P{\tilde{F}}\left( \chi ^* \right) \right) +{\tilde{\phi }}\left( t \right) \end{aligned}$$
(39)

As \(t\rightarrow +\infty \), \(\lim _{t\rightarrow +\infty } P\left( t \right) =P^*\) and \(\lim \sup _{t\rightarrow +\infty } V\left( t \right) <+\infty \) such that \({\tilde{\lambda }}\left( t \right) \) is bounded, consequently, \(\varXi ^+\times \varPsi ^+\ne \varnothing \). From Eq. (27), there is \(\lim _{t\rightarrow +\infty } \dot{{\tilde{\lambda }}}\left( t \right) ={\mathbb {M}}^{\text {T}}P^*-D=0\). Because of the trajectory of (22) is completely continuous and the right side of the (22) about \(P\left( t \right) \) is consistently continuous in t. For \(P\left( t \right) \) is convergent, \(\lim _{t\rightarrow +\infty } {\dot{P}}\left( t \right) =0\) according the Barbalat lemma, the prove is completed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, S., He, X. A Neurodynamic Algorithm for Energy Scheduling Game in Microgrid Distribution Networks. Neural Process Lett 54, 369–385 (2022). https://doi.org/10.1007/s11063-021-10635-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11063-021-10635-2

Keywords