[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Uniform Convergent Tailored Finite Point Method for Advection–Diffusion Equation with Discontinuous, Anisotropic and Vanishing Diffusivity

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

We propose two tailored finite point methods for the advection–diffusion equation with anisotropic tensor diffusivity. The diffusion coefficient can be very small in one direction in some part of the domain and be discontinuous at the interfaces. When flows advect from the vanishing-diffusivity region towards the non-vanishing diffusivity region, standard numerical schemes tend to cause spurious oscillations or negative values. Our proposed schemes have uniform convergence in the vanishing diffusivity limit, even when the solution exhibits interface and boundary layers. When the diffusivity is along the coordinates, the positivity and maximum principle can be proved. We use the value as well as their derivatives at the grid points to construct the scheme for nonaligned case, which makes it can achieve good accuracy and convergence for the derivatives as well, even when there exhibit boundary or interface layers. Numerical experiments are presented to show the performance of the proposed scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Arnold, D.N.: An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19, 742–760 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ashby, S.F., Bosl, W.J., Falgout, R.D., Smith, S.G., Tompson, A.F., Williams, T.J.: A numerical simulation of groundwater flow and contaminant transport on the CRAY T3D and C90 supercomputers. Int. J. High Perform. Comput. Appl. 13(1), 80–93 (1999)

    Article  Google Scholar 

  3. Ern, A., Stephansen, A.F., Zunino, P.: A discontinuous Galerkin method with weighted averages for advection–diffusion equations with locally small and anisotropic diffusivity. IMA J. Numer. Anal. 29, 235–256 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Han, H., Huang, Z., Kellogg, B.: A tailored finite point method for a singular perturbation problem on an unbounded domain. J. Sci. Comp. 36, 243–261 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Han, H., Huang, Z.Y.: Tailored finite point method for a singular perturbation problem with variable coefficients in two dimensions. J. Sci. Comput. 49, 200–220 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Han, H., Huang, Z.Y.: Tailored finite point method for steady-state reaction–diffusion equation. Commun. Math. Sci. 8, 887–899 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Han, H., Huang, Z.Y.: Tailored finite point method based on exponential bases for convection–diffusion–reaction equation. Math. Comput. 82, 213–226 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Han, H., Huang, Z.Y., Ying, W.J.: A semi-discrete tailored finite point method for a class of anisotropic diffusion problems. Comput. Math. Appl. 65, 1760–1774 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hyman, J., Morel, J., Shashkov, M., Steinberg, S.: Mimetic finite difference methods for diffusion equations. Comput. Geosci. 6, 333–352 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. Herbin,R.,Hubert, F.: Benchmark on discretization schemes for anisotropic diffusion problems on general grids. In: Eymard, R., Herard, J.-M. (eds.) Finite Volumes for Complex Applications V, pp. 659–692. John Wiley & Sons (2008)

  11. Kellogg, R.B., Houde, Han: Numerical analysis of singular perturbation problems. Hemisphere Publishing Corp, USA. Distributed outside North America by Springer-Verlag, pp. 323–335 (1983)

  12. Lipnikov, K., Shashkov, M., Svyatskiy, D., Vassilevski, Yu.: Monotone finite volume schemes for diffusion equations on unstructured triangular and shape-regular polygonal meshes regimes. J. Comput. Phys. 227, 492–512 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lipnikov, K., Svyatskiy, D., Vassilevski, Y.: A monotone finite volume method for advection diffusion equations on unstructured polygonal meshes. J. Comput. Phys. 229, 4017–4032 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Motzkin, T.S., Wasow, W.: On the approximation of linear elliptic differential equations by difference equations with positive coefficients. J. Math. Phys. 31, 253–259 (1953)

    Article  MathSciNet  MATH  Google Scholar 

  15. Leveque, R.J., Li, Z.L.: The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 31, 1019–1044 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  16. Oberman, A.M.: Convergent difference schemes for degenerate elliptic and parabolic equations: Hamilton–Jacobi equations and free boundary problems. SIAM J. Numer. Anal. 44(2), 879–895 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Pasdunkorale, J., Turner, I.W.: A second order control-volume finite-element least-squares strategy for simulating diffusion in strongly anisotropic media. J. Comput. Math. 23, 1–16 (2005)

    MathSciNet  MATH  Google Scholar 

  18. Sheng, Z.Q., Yue, J.Y., Yuan, G.W.: Monotone finite volume schemes of nonequilibrium radiation diffusion equations on distorted meshes. SIAM J. Sci. Comput. 31(4), 2915–2934 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Treguier, A.M.: Modelisation numerique pour loceanographie physique. Ann. Math. Blaise Pascal 9(2), 345–361 (2002)

    Article  MathSciNet  Google Scholar 

  20. van Esa, B., Koren, B., de Blank, H.J.: Finite-difference schemes for anisotropic diffusion. J. Comput. Phys. 272, 526–549 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wu, J.M., Gao, Z.M.: Interpolation-based second-order monotone finite volume schemes for anisotropic diffusion equations on general grids. J. Comput. Phys. 274, 569–588 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Younes, A., Fontaine, V.: Efficiency of mixed hybrid finite element and multipoint flux approximation methods on quadrangular grids and highly anisotropic media. Int. J. Numer. Methods Eng. 76, 314–336 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yuan, G.W., Sheng, Z.Q.: Monotone finite volume schemes for diffusion equations on polygonal meshes. J. Comput. Phys. 227(12), 6288–6312 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Tang.

Additional information

Min Tang is partially supported by NSFC 11301336 and 91330203.

Appendix

Appendix

Here, we show that the limiting scheme for the degenerate equation is consist and explain heuristically the monotonicity. We only consider the case when \(\beta _1=\beta _2=0\) and \(\theta \ne 0\). In the limit that \(\epsilon _{i,j}\rightarrow 0\) in (25),

$$\begin{aligned} r_1\rightarrow \gamma _1=-\alpha \cos ^2\theta ,\quad r_2\rightarrow \gamma _2=-\alpha \sin ^2\theta ,\quad r_3\rightarrow \gamma _3=2\alpha \sin \theta \cos \theta . \end{aligned}$$

Let the coefficient matrix \(D_k\) in (34) be \((D_k^1,~D_k^2),~k=1,2,3,4\), where \(D_k^i\) (\(i=1,2\)) are \(3\times 1\) columns. We need to show that (34) becomes a consistent and monotone discretization for

$$\begin{aligned} \displaystyle \gamma _1\frac{\partial ^2 v}{\partial x^2}+\gamma _2\frac{\partial ^2 v}{\partial y^2}+\gamma _3\frac{\partial ^2 v}{\partial x\partial y}+v=0. \end{aligned}$$
(49)

Due to the form of \(\gamma _1\), \(\gamma _2\), \(\gamma _3\), (49) can be rewritten as

$$\begin{aligned} -\alpha \frac{\partial ^2v}{\partial \xi ^2}+v=0,\qquad \text{ with } \xi =x\cos \theta +y\sin \theta . \end{aligned}$$
(50)

If we are able to show that when \(\epsilon _{i,j}\rightarrow 0\), the limit of (34) is a discretization to (50), the proof completes.

For the degenerate case we consider here, \(\beta _{1,i,j}=\beta _{2,i,j}=\epsilon _{i,j}=0\), so that \((\lambda _{i,j}, \mu _{i,j})\) in (31) become \((\pm \sqrt{\frac{1}{\alpha \cos ^2\theta }},0)\), \((0,\pm \sqrt{\frac{1}{\alpha \sin ^2\theta }})\). Let

$$\begin{aligned} \lambda =\sqrt{\frac{1}{\alpha \cos ^2\theta }}, \qquad \mu =\sqrt{\frac{1}{\alpha \sin ^2\theta }}, \end{aligned}$$
(51)

the linear space \(H_{i,j}\) becomes

$$\begin{aligned}&\{e^{\lambda x},e^{-\lambda x},e^{\mu y},e^{-\mu y},(x\sin \theta -y\cos \theta )e^{\lambda x},(-x\sin \theta +y\cos \theta )e^{-\lambda x},\\&(x\sin \theta -y\cos \theta )e^{\mu y}, (-x\sin \theta +y\cos \theta )e^{-\mu y}\} \end{aligned}$$

When \((\lambda _{k,i,j},\mu _{k,i,j})=(\pm \lambda ,0)\), \((\lambda _{k,i,j},\mu _{k,i,j})=(0,\pm \mu )\), (35) are respectively

$$\begin{aligned}&\begin{aligned} \left( \begin{array}{l}1\\ \pm \lambda \\ 0\end{array}\right)&= D_1\left( \begin{array}{l}1\\ 0\end{array}\right) e^{\pm \lambda h_x} +D_2\left( \begin{array}{l}1\\ 0\end{array}\right) e^{\mp \lambda h_x} +D_3\left( \begin{array}{l}1\\ \pm \lambda \end{array}\right) +D_4\left( \begin{array}{l}1\\ \pm \lambda \end{array}\right) ,\\&=D_1^1e^{\pm \lambda hx}+D_2^1e^{\mp \lambda hx}+D_3^1+D_4^1\pm \lambda (D_3^2+D_4^2). \end{aligned} \end{aligned}$$
(52)
$$\begin{aligned}&\begin{aligned} \left( \begin{array}{l}1\\ 0\\ \pm \mu \end{array}\right)&= D_1\left( \begin{array}{l}1\\ \pm \mu \end{array}\right) +D_2\left( \begin{array}{l}1\\ \pm \mu \end{array}\right) +D_3\left( \begin{array}{l}1\\ 0\end{array}\right) e^{\pm \mu h_y} +D_4\left( \begin{array}{l}1\\ 0\end{array}\right) e^{\mp \mu h_y},\\&=D_1^1+D_2^1\pm \mu (D_1^2+D_2^2)+D_3^1e^{\pm \mu h_y}+D_4^1e^{\mp \mu h_y}. \end{aligned} \end{aligned}$$
(53)

and (36) are respectively (after dividing some constant)

$$\begin{aligned}&\begin{aligned} \left( \begin{array}{l}0\\ \sin \theta \\ -\cos \theta \end{array}\right)&= D_1\left( \begin{array}{l}h_x\sin \theta \\ -\cos \theta \end{array}\right) e^{\pm \lambda h_x} +D_2\left( \begin{array}{l} -h_x\sin \theta \\ -\cos \theta \end{array}\right) e^{\mp \lambda h_x}\\&\quad +D_3\left( \begin{array}{l} h_y\cos \theta \\ \sin \theta \mp h_y\lambda \cos \theta \end{array}\right) +D_4\left( \begin{array}{l}-h_y\cos \theta \\ \sin \theta \pm h_y\lambda \cos \theta \end{array}\right) .\\&=h_x\sin \theta (D_1^1e^{\pm \lambda h_x}-D_2^1e^{\mp \lambda h_x})-\cos \theta (D_1^2e^{\pm \lambda h_x}+D_2^2e^{\mp \lambda h_x})\\&\quad -h_y\cos \theta (D_3^1-D_4^1)+\sin \theta (D_3^2+D_4^2)\mp h_y\lambda \cos \theta (D_3^2-D_4^2) \end{aligned} \end{aligned}$$
(54)
$$\begin{aligned}&\begin{aligned} \left( \begin{array}{l}0\\ \sin \theta \\ -\cos \theta \end{array}\right)&= D_1\left( \begin{array}{l}h_x\sin \theta \\ -\cos \theta \pm h_x\mu \sin \theta \end{array}\right) +D_2\left( \begin{array}{l}-h_x\sin \theta \\ -\cos \theta \mp h_x\mu \sin \theta \end{array}\right) \\&\quad +D_3\left( \begin{array}{l} -h_y\cos \theta \\ \sin \theta \end{array}\right) e^{\pm \mu h_y} +D_4\left( \begin{array}{l}h_y\cos \theta \\ \sin \theta \end{array}\right) e^{\mp \mu h_y}.\\&=h_x\sin \theta (D_1^1-D_2^1)-\cos \theta (D_1^2+D_2^2)\pm h_x\mu \sin \theta (D_1^2-D_2^2)\\&\quad -h_y\cos \theta (D_3^1e^{\pm \mu h_y}-D_4^1e^{\mp \mu h_y})+\sin \theta (D_3^2e^{\pm \mu h_y}+D_4^2e^{\mp \mu h_y}) \end{aligned} \end{aligned}$$
(55)

Let

$$\begin{aligned} D_k^i=\big (D_{k,1}^i, D_{k,2}^i,D_{k,3}^i\big )^\intercal , \qquad k=1,2,3,4,\quad i=1,2. \end{aligned}$$
(56)

The subtraction of the two equations in (52), the subtraction of the two equations in (53) and the summation of the two equations in (54), the summation of the two equations in (54) yield a linear system with scalar coefficnets for

$$\begin{aligned} D_1^1-D_2^1,\quad D_3^1-D_4^1,\quad D_1^2+D_2^2,\quad D_3^2+D_4^2. \end{aligned}$$

Since the right hand side of the subsystem for \(D_{1,1}^1-D_{2,1}^1\), \(D_{3,1}^1-D_{4,1}^1\), \(D_{1,1}^2+D_{2,1}^2\) and \(D_{3,1}^3+D_{4,1}^2\) is zero, we get

$$\begin{aligned} D_{1,1}^1=D_{2,1}^1=g_1,\quad D_{3,1}^1=D_{4,1}^1=g_2,\quad D_{1,1}^2=-D_{2,1}^2=g_3,\quad D_{3,1}^3=-D_{4,1}^2=g_4. \end{aligned}$$

The summation of the two equations in (52), the summation of the two equations in (53) and the subtraction of the two equations in (54), the subtraction of the two equations in (54) yield a linear system with scalar coefficients for

$$\begin{aligned} D_1^1+D_2^1,\quad D_3^1+D_4^1,\quad D_1^2-D_2^2,\quad D_3^2-D_4^2, \end{aligned}$$

which provides the following system for \(g_1\), \(g_2\), \(g_3\), \(g_4\)

$$\begin{aligned} \left\{ \begin{array}{ll} \displaystyle g_1\cosh (\lambda h_x)+g_2=\frac{1}{2}, \\ \displaystyle g_1+g_2\cosh (\mu h_y)=\frac{1}{2},\\ \displaystyle g_1h_x\sin \theta \sinh (\lambda h_x)+g_3\cos \theta \sinh (\lambda h_x)+g_4\lambda h_y\cos \theta =0,\\ \displaystyle g_3\mu h_x\sin \theta +g_2h_y\cos \theta \sinh (\mu h_y)+g_4\sin \theta \sinh (\mu h_y)=0.\end{array} \right. \end{aligned}$$
(57)

The first line of the scheme (34) is

$$\begin{aligned} \displaystyle u_{i,j}= & {} g_1 u_{i+1,j}+g_3\partial _y u_{i+1,j}+g_1 u_{i-1,j}-g_3\partial _y u_{i-1,j}+g_2 u_{i,j+1}+g_4\partial _x u_{i,j+1}\nonumber \\&+g_2 u_{i,j-1}-g_4\partial _x u_{i,j-1}. \end{aligned}$$
(58)

The system (57) can be solved exactly such that

$$\begin{aligned} \left\{ \begin{array}{ll} \displaystyle g_1=\frac{1}{2}\frac{\cosh (\mu h_y)-1}{\cosh (\lambda h_x)\cos (\mu h_y)-1}, \\ \displaystyle g_2=\frac{1}{2}\frac{\cosh (\lambda h_x)-1}{\cosh (\lambda h_x)\cos (\mu h_y)-1},\\ \displaystyle g_3=\frac{g_1h_x\sin ^2\theta \sinh (\lambda h_x)\sinh (\mu h_y)-g_2\lambda h_y^2\cos ^2\theta \sinh (\mu h_y)}{\cos \theta \sin \theta \sinh (\lambda h_x)\sinh (\mu h_y)-\lambda \mu \sin \theta \cos \theta h_x h_y},\\ \displaystyle g_4=\frac{-g_2h_y\cos ^2\theta \sinh (\lambda h_x)\sinh (\mu h_y)+g_1\mu h_x^2\sin ^2\theta \sinh (\lambda h_x)}{\cos \theta \sin \theta \sinh (\lambda h_x)\sinh (\mu h_y)-\lambda \mu \sin \theta \cos \theta h_x h_y}. \end{array} \right. \end{aligned}$$

Then by Taylor expansion, when \(\theta \) is away from \(n\pi /2\) (\(n=0,1,2,3\)) and the mesh is fine enough,

$$\begin{aligned} \begin{aligned} \displaystyle g_1&\approx 1/2\frac{ (\mu h_y)^2}{(\lambda h_x)^2+(\mu h_y)^2}, \quad \displaystyle g_2\approx 1/2\frac{ (\lambda h_x)^2}{(\lambda h_x)^2+(\mu h_y)^2},\\ \displaystyle \frac{g_3}{\frac{\sin \theta }{\cos \theta }h_x}&\approx \frac{ (\lambda h_x)^2}{(\lambda h_x)^2+(\mu h_y)^2}g_1, \quad \displaystyle \frac{g_4}{\frac{\cos \theta }{\sin \theta }h_y}\approx \frac{ (\mu h_y)^2}{(\lambda h_x)^2+(\mu h_y)^2}g_2. \end{aligned} \end{aligned}$$
(59)
  • The second order convergence. Let

    $$\begin{aligned} g=\frac{\cosh (\lambda h_x)\cos (\mu h_y)-1}{(\cosh (\lambda h_x)-1)(\cosh (\mu h_y)-1)} \end{aligned}$$

    Multiplying both sides of (58) by g and using (51), (59), we can obtain

    $$\begin{aligned} \begin{aligned}&\displaystyle -\alpha \cos ^2\theta \frac{u_{i+1,j}-2u_{i,j}+u_{i-1,j}}{h_x^2}-\alpha \sin ^2\theta \frac{u_{i,j+1}-2u_{i,j}+u_{i,j-1}}{h_y^2}\\&\displaystyle -2\alpha \sin ^3\theta \cos \theta \frac{\partial _y u_{i+1,j}-\partial _y u_{i-1,j}}{2h_x}-2\alpha \cos ^3\theta \sin \theta \frac{\partial _x u_{i,j+1}-\partial _x u_{i,j-1}}{2h_y}\\&+u_{i,j}=O(h_x^2+h_y^2). \end{aligned} \end{aligned}$$
    (60)

    Therefore the limiting scheme is a second order discretization for (50).

  • Heuristic argument about the monotonicity. When \(\theta \) is away from \(n\pi /2\) with \(n=0,1,2,3\), i.e. \(\sin \theta ,\cos \theta \ne 0\), let

    $$\begin{aligned} \begin{aligned} \digamma _1&= u_{i+1,j}+\frac{\sin \theta }{\cos \theta }h_x\partial _y u_{i+1,j}-2u_{i,j}+u_{i-1,j}-\frac{\sin \theta }{\cos \theta }h_x\partial _y u_{i-1,j},\\ \digamma _2&= u_{i,j+1}+\frac{\cos \theta }{\sin \theta }h_y\partial _x u_{i,j+1}-2u_{i,j}+u_{i,j-1}-\frac{\cos \theta }{\sin \theta }h_y\partial _x u_{i,j-1},\\ \digamma _3&=\left( g_1-\frac{g_3}{\frac{\sin \theta }{\cos \theta }h_x}\right) \left( u_{i+1,j}+u_{i-1,j}\right) +\left( g_2-\frac{g_4}{\frac{\cos \theta }{\sin \theta }h_y}\right) (u_{i,j+1}+u_{i,j-1})-u_{i,j}. \end{aligned} \end{aligned}$$
    (61)

    We can reformulate (58) into

    $$\begin{aligned} \displaystyle \frac{g_3}{\frac{\sin \theta }{\cos \theta }h_x}\digamma _1+\frac{g_4}{\frac{\cos \theta }{\sin \theta }h_y} \digamma _2+\digamma _3+\left( 2\frac{g_3}{\frac{\sin \theta }{\cos \theta }h_x}+2\frac{g_4}{\frac{\cos \theta }{\sin \theta }h_y}\right) u_{i,j}=0. \end{aligned}$$
    (62)

    According to the definition of monotone schemes for degenerate elliptic equation in [16], in order to have a consist and convergent scheme for the degenerate elliptic equation, we have to show that the coefficients in front of all neighboring grids are positive while the coefficient in front of \(u_{i,j}\) are negative. For simplicity we only consider the case when \(\theta \in (0,\pi /2)\). First of all, \(g_1,g_2,g_3,g_4>0\) in this case.

    $$\begin{aligned} \begin{aligned} u_{i+1,j}+\frac{\sin \theta }{\cos \theta }h_x\partial _y u_{i+1,j},\qquad&u_{i-1,j}-\frac{\sin \theta }{\cos \theta }h_x\partial _y u_{i-1,j},\\ u_{i,j+1}+\frac{\cos \theta }{\sin \theta }h_y\partial _x u_{i,j+1},\qquad&u_{i,j-1}-\frac{\cos \theta }{\sin \theta }h_y\partial _x u_{i,j-1} \end{aligned} \end{aligned}$$

    can be respectively considered as approximations to the function values at \(Z_{i,j}^1\), \(Z_{i,j}^2\), \(Z_{i,j}^3\), \(Z_{i,j}^4\) in Fig. 12. Besides, from (59) and \(g_1,g_2>0\), the coefficients in front of \(u_{i\pm 1,j}\), \(u_{i,j\pm 1}\) in \(\digamma _3\) are positive. Finally, the coefficient in front of \(u_{i,j}\) is \(-1\) which is negative, therefore the limiting scheme is monotone, which gives the convergence of the scheme for the degenerate equation according to [16]. When \(\theta \) is in other quadrant, the discussion is the same.

    The approximations in (59) can only be valid the mesh have to be fine enough, especially when \(\theta \) is really close to \(n\pi /2\). One may argue that when \(\theta \) is close to \(n\pi /2\) with \(n=0,1,2,3\), the locations of \(Z_{i,j}^1\), \(Z_{i,j}^2\), \(Z_{i,j}^3\), \(Z_{i,j}^4\) can be far away from the cell. This is not a proof but a heuristic argument. However, the numerical results seem quite promising.

Fig. 12
figure 12

The limiting scheme

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, M., Wang, Y. Uniform Convergent Tailored Finite Point Method for Advection–Diffusion Equation with Discontinuous, Anisotropic and Vanishing Diffusivity. J Sci Comput 70, 272–300 (2017). https://doi.org/10.1007/s10915-016-0254-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10915-016-0254-1

Keywords

Navigation