[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

PLISS: labeling places using online changepoint detection

  • Published:
Autonomous Robots Aims and scope Submit manuscript

Abstract

A shared vocabulary between humans and robots for describing spatial concepts is essential for effective human robot interaction. Towards this goal, we present a novel technique for place categorization from visual cues called PLISS (Place Labeling through Image Sequence Segmentation). PLISS is different from existing place categorization systems in two major ways—it inherently works on video and image streams rather than single images, and it can detect “unknown” place labels, i.e. place categories that it does not know about. PLISS uses changepoint detection to temporally segment image sequences which are subsequently labeled. Changepoint detection and labeling are performed inside a systematic probabilistic framework. Unknown place labels are detected by using a probabilistic classifier and keeping track of its label uncertainty. We present experiments and comparisons on the large and extensive VPC dataset. We also demonstrate results using models learned from images downloaded from Google’s image search.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Algorithm 1
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Adams, R. P., & MacKay, D. J. C. (2007). Bayesian online changepoint detection (Technical report). University of Cambridge, Cambridge, UK. arXiv:0710.3742v1 [stat.ML].

  • Andreasson, H., Treptow, A., & Duckett, T. (2005). Localization for mobile robots using panoramic vision, local features and particle filter. In IEEE intl. conf. on robotics and automation (ICRA).

    Google Scholar 

  • Bosch, A., Zisserman, A., & Munoz, X. (2007). Image classification using random forests and ferns. In Intl. conf. on computer vision (ICCV) (pp. 1–8).

    Google Scholar 

  • Casella, G., & Robert, C. P. (1996). Rao-Blackwellisation of sampling schemes. Biometrika, 83(1), 81–94.

    Article  MathSciNet  MATH  Google Scholar 

  • Chang, C.-C., & Lin, C.-J. (2001). LIBSVM: a library for support vector machines.

  • Chopin, N. (2007). Dynamic detection of change points in long time series. Annals of the Institute of Statistical Mathematics, 59(2), 349–366.

    Article  MathSciNet  MATH  Google Scholar 

  • Csato, L., & Opper, M. (2002). Sparse online Gaussian processes. Neural Computation, 14(2), 641–669.

    Article  MATH  Google Scholar 

  • Dasgupta, S., Hsu, D. J., & Verma, N. (2006). A concentration theorem for projections. In Conf. on uncertainty in artificial intelligence (UAI).

    Google Scholar 

  • Datta, R., Joshi, D., Li, J., & Wang, J. Z. (2008). Image retrieval: Ideas, influences, and trends of the new age.. ACM Computing Surveys (CSUR), 40(2), 1–60.

    Article  Google Scholar 

  • Diaconis, P., & Freedman, D. (1984). Asymptotics of graphical projection pursuit. Annals of Statistics, 12, 793–815.

    Article  MathSciNet  MATH  Google Scholar 

  • Esterby, S. R., & El-Shaarawi, A. H. (1981). Inference about the point of change in a regression model. Applied Statistics, 30(3), 277–285.

    Article  MathSciNet  MATH  Google Scholar 

  • Fearnhead, P., & Clifford, P. (2003). Online inference for hidden Markov models. Journal of the Royal Statistical Society: Series B, 65, 887–899.

    Article  MathSciNet  MATH  Google Scholar 

  • Fearnhead, P., & Liu, Z. (2007). On-line inference for multiple changepoint problems. Journal of the Royal Statistical Society: Series B, 69(4), 589–605.

    Article  MathSciNet  Google Scholar 

  • Fei-Fei, L., & Perona, P. (2005). A Bayesian hierarchical model for learning natural scene categories. In IEEE conf. on computer vision and pattern recognition (CVPR).

    Google Scholar 

  • Gaspar, J., Winters, N., & Santos-Victor, J. (2000). Vision-based navigation and environmental representations with an omnidirectional camera. IEEE Transactions on Robotics and Automation, 16(6), 890–898.

    Article  Google Scholar 

  • Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995). Bayesian data analysis. London: Chapman and Hall.

    Google Scholar 

  • Grauman, K., & Darrell, T. (2007). The pyramid match kernel: Efficient learning with sets of features. Journal of Machine Learning Research, 8, 725–760.

    MATH  Google Scholar 

  • Kapoor, A., Grauman, K., Urtasun, R., & Darrell, T. (2010). Gaussian processes for object categorization. International Journal of Computer Vision, 88, 169–188.

    Article  Google Scholar 

  • Kuipers, B. J. (2000). The spatial semantic hierarchy. Artificial Intelligence, 119, 191–233.

    Article  MathSciNet  MATH  Google Scholar 

  • Kuipers, B., & Beeson, P. (2002). Bootstrap learning for place recognition. In Nat. conf. on artificial intelligence (AAAI) (pp. 174–180).

    Google Scholar 

  • Lazebnik, S., Schmid, C., & Ponce, J. (2006). Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In IEEE conf. on computer vision and pattern recognition (CVPR).

    Google Scholar 

  • Madsen, R. E., Kauchak, D., & Elkan, C. (2005). Modeling word burstiness using the Dirichlet distribution. In Intl. conf. on machine learning (ICML) (pp. 545–552).

    Chapter  Google Scholar 

  • Malik, J., Belongie, S., Leung, T., & Shi, J. (2001). Contour and texture analysis for image segmentation. International Journal of Computer Vision, 43, 7–27.

    Article  MATH  Google Scholar 

  • Martínez Mozos, O., Rottmann, A., Triebel, R., Jensfelt, P., & Burgard, W. (2006). Semantic labeling of places using information extracted from laser and vision sensor data. In Proc. of the IEEE/RSJ IROS 2006 workshop: from sensors to human spatial concepts.

    Google Scholar 

  • Menegatti, E., Maeda, T., & Ishiguro, H. (2004). Image-based memory for robot navigation using properties of the omnidirectional images. Journal of Robotics and Autonomous Systems, 47(4), 251–267.

    Article  Google Scholar 

  • Minka, T. P. Estimating a Dirichlet distribution (2003).

  • Minka, T. P. (2003). The ‘summation hack’ as an outlier model.

  • Naor, A., & Romik, D. (2003). Projecting the surface measure of the sphere of \(l_{p}^{n}\). Annales de l’Institut Henri Poincare (B), Probability and Statistics, 39, 241–261.

    Article  MathSciNet  MATH  Google Scholar 

  • Oliva, A., & Torralba, A. (2006). Building the gist of a scene: The role of global image features in recognition. Visual Perception, Progress in Brain Research, 155.

  • Page, E. S. (1954). Continuous inspection scheme. Biometrika, 41, 100–115.

    MathSciNet  MATH  Google Scholar 

  • Posner, I., Schroeter, D., & Newman, P. (2006). Using scene similarity for place labeling. In International symposium of experimental robotics.

    Google Scholar 

  • Posner, I., Cummins, M., & Newman, P. (2009). A generative framework for fast urban labeling using spatial and temporal context. Autonomous Robots, 26, 153–170.

    Article  Google Scholar 

  • Pronobis, A., Mozos, O. M., Caputo, B., & Jensfelt, P. (2010). Multi-modal semantic place classification. International Journal of Robotics Research, 29(2–3), 298–320.

    Google Scholar 

  • Ranganathan, A. (2010). Pliss: Detecting and labeling places using online change-point detection. In Proceedings of robotics: science and systems.

    Google Scholar 

  • Ranganathan, A., & Dellaert, F. (2007). Semantic modeling of places using objects. In Robotics: science and systems (RSS), Atlanta, USA.

    Google Scholar 

  • Rasmussen, C. E., & Williams, C. K. I. (2006). Gaussian processes for machine learning. Cambridge: MIT Press.

    MATH  Google Scholar 

  • Rauch, H. (1963). Solutions to the linear smoothing problem. IEEE Transactions on Automatic Control, 8(4), 371–372.

    Article  Google Scholar 

  • Rottmann, A., Martinez Mozos, O., Stachniss, C., & Burgard, W. (2005). Semantic place classification of indoor environments with mobile robots using boosting. In Nat. conf. on artificial intelligence (AAAI).

    Google Scholar 

  • Salakhutdinov, R., & Hinton, G. (2009). Semantic hashing. International Journal of Approximate Reasoning, 50(7), 969–978.

    Article  Google Scholar 

  • Schölkopf, B., Burges, C. J. C., & Smola, A. J. (1999). Advances in kernel methods—support vector learning. Cambridge: MIT Press.

    Google Scholar 

  • Siagian, C., & Itti, L. (2007). Biologically-inspired robotics vision Monte-Carlo localization in the outdoor environment. In IEEE/RSJ intl. conf. on intelligent robots and systems (IROS).

    Google Scholar 

  • Tapus, A., Tomatis, N., & Siegwart, R. (2004). Topological global localization and mapping with fingerprint and uncertainty. In Proceedings of the international symposium on experimental robotics.

    Google Scholar 

  • Taylan Cemgil, A., Zajdel, W., & Krose, B. (2005). A hybrid graphical model for robust feature extraction from video. In IEEE conf. on computer vision and pattern recognition (CVPR).

    Google Scholar 

  • Topp, E. A., Hüttenrauch, H., Christensen, H. I., & Eklundh, K. S. (2006). Bringing together human and robotic environment representations—a pilot study. In IEEE/RSJ intl. conf. on intelligent robots and systems (IROS), Beijing, China, October 2006.

    Google Scholar 

  • Torralba, A., Murphy, K. P., Freeman, W. T., & Rubin, M. A. (2003). Context-based vision system for place and object recognition. In Intl. conf. on computer vision (ICCV) (Vol. 1, pp. 273–280).

    Google Scholar 

  • Tsechpenakis, G., Metaxas, D., Hadjiliadis, O., & Neidle, C. (2006). Robust online change-point detection in video sequences. In 2nd IEEE workshop on vision for human computer interaction (V4HCI), in conjunction with the IEEE conference on computer vision and pattern recognition.

    Google Scholar 

  • Ulrich, I., & Nourbakhsh, I. (2000). Appearance-based place recognition for topological localization. In IEEE intl. conf. on robotics and automation (ICRA), April (Vol. 2, pp. 1023–1029).

    Google Scholar 

  • Weiss, Y., Torralba, A., & Fergus, R. (2008). Spectral hashing. In Advances in neural information processing systems (NIPS).

    Google Scholar 

  • Wiiliams, C. K. I., & Barber, D. (1998). Bayesian classification with Gaussian processes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(12), 1342–1351.

    Article  Google Scholar 

  • Wu, J., & Rehg, J. M. (2008). Where am i: Place instance and category recognition using spatial pact. In IEEE conf. on computer vision and pattern recognition (CVPR).

    Google Scholar 

  • Wu, J., Christensen, H., & Rehg, J. M. (2009). Visual place categorization: Problem, dataset, and algorithm. In IEEE/RSJ intl. conf. on intelligent robots and systems (IROS).

    Google Scholar 

  • Zabih, R., & Woodfill, J. (1994). Non-parametric local transforms for computing visual correspondence. In Eur. conf. on computer vision (ECCV) (Vol. 2, pp. 151–158).

    Google Scholar 

  • Zender, H., Jensfelt, P., Mozos, O. M., Kruijff, G.-J., & Burgard, W. (2007). An integrated robotic system for spatial understanding and situated interaction in indoor environments. In Nat. conf. on artificial intelligence (AAAI).

    Google Scholar 

  • Zhai, Y., & Shah, M. (2005). A general framework for temporal video scene segmentation. In Intl. conf. on computer vision (ICCV) (Vol. 2, pp. 1111–1116).

    Google Scholar 

  • Zivkovic, Z., Booij, O., & Kröse, B. (2007). From images to rooms. Journal of Robotics and Autonomous Systems, 55(5), 411–418.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ananth Ranganathan.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(MOV 8.3 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ranganathan, A. PLISS: labeling places using online changepoint detection. Auton Robot 32, 351–368 (2012). https://doi.org/10.1007/s10514-012-9273-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10514-012-9273-4

Keywords

Navigation