[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Dynamic Detection of Change Points in Long Time Series

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

We consider the problem of detecting change points (structural changes) in long sequences of data, whether in a sequential fashion or not, and without assuming prior knowledge of the number of these change points. We reformulate this problem as the Bayesian filtering and smoothing of a non standard state space model. Towards this goal, we build a hybrid algorithm that relies on particle filtering and Markov chain Monte Carlo ideas. The approach is illustrated by a GARCH change point model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Barry D., Hartigan J. (1993). A Bayesian analysis for change point problems. Journal of the American Statistical Association 88, 309–319

    Article  MATH  MathSciNet  Google Scholar 

  • Carter C.K., Kohn R. (1994). On Gibbs sampling for state space models. Biometrika 81(3): 541–553

    Article  MATH  MathSciNet  Google Scholar 

  • Casella G., Robert C. (1996). Rao-Blackwellisation of sampling schemes. Biometrika 1, 81–94

    Article  MathSciNet  Google Scholar 

  • Chen R., Liu J. (2000). Mixture Kalman filters. Journal of the Royal Statistical Society Series B 62, 493–508

    Article  MATH  Google Scholar 

  • Chib S. (1998). Estimation and comparison of multiple change-point models. Journal of Econometrics 86, 221–241

    Article  MATH  MathSciNet  Google Scholar 

  • Chopin N. (2002). A sequential particle filter for static models. Biometrika 89, 539–552

    Article  MATH  MathSciNet  Google Scholar 

  • Chopin N. (2004). Central Limit Theorem for sequential Monte Carlo methods and its application to Bayesian inference. Annals of Statistics 32(6): 2385–2411

    Article  MATH  MathSciNet  Google Scholar 

  • Chopin N., Pelgrin F. (2004). Bayesian inference and state number determination for hidden Markov models: an application to the information content of the yield curve about inflation. Journal of Econometrics 123(2): 327–344

    Article  MATH  MathSciNet  Google Scholar 

  • de Jong P., Shephard N. (1995). The simulation smoother for time series models. Biometrika 82, 339–350

    Article  MATH  MathSciNet  Google Scholar 

  • Del Moral P., Miclo L. (2000). Branching and interacting particle systems approximations of Feynman-Kac formulae with applications to non-linear filtering. In Azéma J., Emery M., Ledoux M., Yor M., (eds). Séminaire de Probabilités XXXIV, (vol 1729 pp. 1–145). Lecture Notes in Mathematics, Springer, Berlin Heidelberg New York, pp. 1–145

    Chapter  Google Scholar 

  • Doucet A., de Freitas N., Gordon N. (2001). Sequential Monte Carlo Methods in Practice. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  • Doucet A., Godsill S., Andrieu C. (2000). On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing 10(3): 197–208

    Article  Google Scholar 

  • Früwirth-Schnatter S. (1994). Data augmentation and dynamic linear models. Journal of Time Series Analysis 15, 183–202

    MathSciNet  Google Scholar 

  • Gerlach R., Carter C., Kohn R. (2000). Efficient Bayesian inference for dynamic mixture models. Journal of the American Statistical Association 88, 819–828

    Article  MathSciNet  Google Scholar 

  • Gilks W.R., Berzuini C. (2001). Following a moving target—Monte Carlo inference for dynamic Bayesian models. Journal of the Royal Statistical Society Series B 63, 127–146

    Article  MATH  MathSciNet  Google Scholar 

  • Godsill S., Doucet A., West M. (2004). Monte Carlo smoothing for nonlinear time series. Journal of the American Statistical Association 99, 156–168

    Article  MATH  MathSciNet  Google Scholar 

  • Gordon N.J., Salmond D.J., Smith A.F.M. (1993). Novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE Proceeding Communications, Radar, and Signal Processing 140(2): 107–113

    Article  Google Scholar 

  • Green P. (1995). Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82, 711–732

    Article  MATH  MathSciNet  Google Scholar 

  • Kalman R., Bucy R. (1961). New results in linear filtering and prediction theory. Transactions of the American Society of Mechanical Engineers 83, 95–108

    MathSciNet  Google Scholar 

  • Kitagawa G. (1996). Monte Carlo filter and smoother for non-Gaussian nonlinear state space models. Journal of Computational and Graphical Statistics 5, 1–25

    Article  MathSciNet  Google Scholar 

  • Künsch H. (2001). State space and hidden Markov models. In: Barndorff-Nielsen O.E., Cox D.R., Klüppelberg C. (eds). Complex stochastic systems. Chapman and Hall, London, pp. 109–173

    Google Scholar 

  • Liu J., Chen R. (1998). Sequential Monte Carlo methods for dynamic systems. Journal of the American Statistical Association 93, 1032–1044

    Article  MATH  MathSciNet  Google Scholar 

  • McCulloch R., Tsay R. (1993). Bayesian inference and prediction for mean and variance shifts in autoregressive time series. Journal of the American Statistical Association 88, 968–978

    Article  MATH  Google Scholar 

  • Mikosch T., Stărică C. (2003). Long range dependence effects and ARCH modelling. In: Doukhan P., Oppenheim G., Taqqu M. (eds). Theory and applications of long range dependence. Birkhauser, Boston

    Google Scholar 

  • Mikosch T., Stărică C. (2004). Non-stationarities in financial time series, the long range dependence and the IGARCH effects. Review of Economics and Statistics 86, 378–390

    Article  Google Scholar 

  • Pitt M., Shephard N. (1999). Filtering via simulation: auxiliary particle filters. Journal of the American Statistical Association 94, 590–599

    Article  MATH  MathSciNet  Google Scholar 

  • Robert C.P., Casella G. (2004). Monte Carlo statistical methods, 2nd edn. Springer, Berlin Heidelberg New York

    MATH  Google Scholar 

  • Roberts G., Gelman A., Gilks W. (1997). Weak convergence and optimal scaling of random walk Metropolis algorithms. Annals of Applied probability 7, 110–120

    Article  MATH  MathSciNet  Google Scholar 

  • Stephens D.A. (1994). Bayesian retrospective multiple-changepoint identification. Applied Statistics 43(1): 159–178

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Chopin.

About this article

Cite this article

Chopin, N. Dynamic Detection of Change Points in Long Time Series. AISM 59, 349–366 (2007). https://doi.org/10.1007/s10463-006-0053-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-006-0053-9

Keywords

Navigation