[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

A cubic spline penalty for sparse approximation under tight frame balanced model

  • Published:
Advances in Computational Mathematics Aims and scope Submit manuscript

Abstract

The study of non-convex penalties has recently received considerable attentions in sparse approximation. The existing non-convex penalties are proposed on the principle of seeking for a continuous alternative to the 0-norm penalty. In this paper, we come up with a cubic spline penalty (CSP) which is also continuous but closer to 0-norm penalty compared to the existing ones. As a result, it produces the weakest bias among them. Wavelet tight frames are efficient for sparse approximation due to its redundancy and fast implementation algorithm. We adopt a tight frame balanced model with our proposed cubic spline penalty since the balanced model takes the advantages of both analysis and synthesis model. To solve the non-convex CSP penalized problem, we employ a proximal local linear approximation (PLLA) algorithm and prove the generated sequence converges to a stationary point of the model if it is bounded. Under additional conditions, we find that the limit point behaves as well as the oracle solution, which is obtained by using the exact support of the ground truth signal. The efficiency of our cubic spline penalty are further demonstrated in applications of variable selection and image deblurring.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson, S. R., Auquier, A., Hauck, W. W., Oakes, D., Vandaele, W., Weisberg, H. I.: Statistical methods for comparative studies: techniques for bias reduction, vol. 170. Wiley, New York (2009)

    MATH  Google Scholar 

  2. Antoniadis, A.: Wavelets in statistics: a review. J Italian Stat Soc 6(2), 97 (1997)

    Article  Google Scholar 

  3. Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka-Łojasiewicz inequality. Math. Oper. Res. 35(2), 438–457 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Attouch, H., Bolte, J., Svaiter, B. F.: Convergence of descent methods for semi-algebraic and tame problems: Proximal algorithms, forward-backward splitting, and regularized Gauss-Seidel methods. Math. Program. 137(1-2), 91–129 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bolte, J., Daniilidis, A., Lewis, A.: The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim. 17(4), 1205–1223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bolte, J. B., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146(1-2), 459–494 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. de Boor, C.: A Practical Guide to Splines (revised edition). Springer, Berlin (2001)

    MATH  Google Scholar 

  9. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)

    Article  MATH  Google Scholar 

  10. Breiman, L.: Heuristics of instability and stabilization in model selection. Ann. Statist. 24(6), 2350–2383 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cai, J. F., Chan, R. H., Shen, Z.: A framelet-based image inpainting algorithm. Appl. Comput. Harmon. Anal. 24(2), 131–149 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cai, J. F., Dong, B., Osher, S., Shen, Z.: Image restoration: total variation, wavelet frames, and beyond. J. Amer. Math. Soc. 25(4), 1033–1089 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Chai, A., Shen, Z.: Deconvolution: a wavelet frame approach. Numer. Math. 106(4), 529–587 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Daubechies, I.: Ten lectures on wavelets society for industrial and applied mathematics (1992)

  15. Daubechies, I., Han, B., Ron, A., Shen, Z.: Framelets: MRA-based constructions of wavelet frames. Appl. Comput. Harmon. Anal. 14(1), 1–46 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Davis, G., Mallat, S., Avellaneda, M.: Adaptive greedy approximations. Constr. Approx. 13(1), 57–98 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Dong, B., Shen, Z.: MRA-based wavelet frames and applications. In: Mathematics in Image Processing, IAS/Park City Mathematics Series. American Mathematical Society and and IAS/Park City Mathematics Institute, vol. 19, pp 7–158 (2013)

  18. Dong, B., Shen, Z.: Image restoration: a data-driven perspective. In: Proceedings of the International Cogress on Industrial and Applied Mathematics (ICIAM) (2015)

  19. Donoho, D. L., Johnstone, J. M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3), 425–455 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  20. Elad, M., Starck, J.L., Querre, P., Donoho, D.: Simultaneous cartoon and texture image inpainting using morphological component analysis (MCA). Appl. Comput. Harmon. Anal. 19(3), 340–358 (2005). Computational Harmonic Analysis - Part 1

    Article  MathSciNet  MATH  Google Scholar 

  21. Fan, J., Li, R.: Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96(456), 1348–1360 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fan, J., Xue, L., Zou, H.: Strong oracle optimality of folded concave penalized estimation. Ann. Statist. 42(3), 819 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Figueiredo, M. A. T., Nowak, R. D.: An em algorithm for wavelet-based image restoration. IEEE Trans. Image Process. 12(8), 906–916 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Figueiredo, M. A. T., Nowak, R. D.: A bound optimization approach to wavelet-based image deconvolution. In: IEEE International Conference on Image Processing 2005, vol. 2, pp II–782–5 (2005)

  25. Friedman, J., Hastie, T., Tibshirani, R.: Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33(1), 1–22 (2010)

    Article  Google Scholar 

  26. Hsu, D., Kakade, S. M., Zhang, T.: A tail inequality for quadratic forms of subgaussian random vectors. Electron. Commun. Probab. 17(25), 1–6 (2011)

    MathSciNet  MATH  Google Scholar 

  27. Kurdyka, K.: On gradients of functions definable in o-minimal structures. Ann. Inst. Fourier (Grenoble) 48(3), 769–783 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Liu, H., Yao, T., Li, R., Ye, Y.: Folded concave penalized sparse linear regression: sparsity, statistical performance, and algorithmic theory for local solutions. Math. Program. 166(1-2), 207–240 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Łojasiewicz, S.: Une propriété topologique des sous-ensembles analytiques réels. In: Les Équations Aux Dérivées Partielles (Paris, 1962). Éditions Du Centre National De La Recherche Scientifique, Paris, pp 87–89 (1963)

  30. Rockafellar, R. T., Wets, R. J. B.: Variational Analysis. Grundlehren der Mathematischen Wissenschaften, vol. 317. Springer, Berlin (1998)

    Google Scholar 

  31. Ron, A., Shen, Z.: Affine systems in \(l_{2}(\mathbb {R}^{d})\): The analysis of the analysis operator. J. Funct. Anal. 148(2), 408–447 (1997)

    Article  MathSciNet  Google Scholar 

  32. Shen, Z., Toh, K., Yun, S.: An accelerated proximal gradient algorithm for frame-based image restoration via the balanced approach. SIAM J. Imaging Sci. 4 (2), 573–596 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Starck, J.L., Elad, M., Donoho, D.L.: Image decomposition via the combination of sparse representations and a variational approach. IEEE Trans. Image Process. 14(10), 1570–1582 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tibshirani, R.: Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological) 58(1), 267–288 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang, C.H.: Nearly unbiased variable selection under minimax concave penalty. Ann. Statist. 38(2), 894–942 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Zou, H.: The adaptive lasso and its oracle properties. J Am Stat Assoc 101 (476), 1418–1429 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zou, H., Li, R.: One-step sparse estimates in nonconcave penalized likelihood models. Ann. Statist. 36(4), 1509–1533 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The work of the second author was supported by National Natural Science Foundation of China (Grants 11301289, 11531013 and 11871035), Recruitment Program of Global Young Expert, and the Fundamental Research Funds for the Central Universities. The work of the third author was supported by Chinese Scholarship Council and PHD Program 52XB2013 of Tianjin Normal University. The authors are grateful to the editor and the anonymous referees for their valuable suggestions and comments, which helped improve this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhifang Liu.

Additional information

Communicated by: Yuesheng Xu

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

We provide some related definitions and results about Kurdyka–Łojasiewicz (KL) property in this section.

Definition 1 (Subdifferentials 30)

Let \(h: \mathbb {R}^{p} \to \mathbb {R}\cup \{+\infty \}\) be a proper, lower semicontinuous function.

  1. (i)

    The regular subdifferential of h at \(\bar {z} \in \text{dom } h = \{z \in \mathbb {R}^{p}: h(z) < +\infty \}\) is defined as follows:

    $$ \widehat{\partial}h(\bar{z} ) := \left\{ v \in\mathbb{R}^{p}:\underset{z \neq \bar{z}}{\liminf\limits_{z \to \bar{z}}} \frac{h(z)-h(\bar{z})- \langle v,z -\bar{z} \rangle}{\|z-\bar{z}\|}\geq 0 \right\}; $$
  2. (ii)

    The (limiting) subdifferential of h at \(\bar {z} \in \text{dom } h \) is defined as follows:

    $$ \partial h(\bar{z} ):=\left\{ v \in\mathbb{R}^{p}: \exists z^{(k)} \to \bar{z} , h(z^{(k)}) \to h(z), v^{(k)}\in \widehat{\partial} h(z^{(k)}), v^{(k)} \to v \right\}. $$

In [27, 29], Łojasiewicz and Kurdyka established the foundational works on the Kurdyka–Łojasiewicz (KL) property. The development of the application of KL property in optimization theory can be found in [3, 4, 6, 7] and reference therein.

Definition 2 (KL property 3)

A proper function h is said to have the KL property at \(\bar {z} \in \text{dom } \partial h = \{z \in \mathbb {R}^{p}: \partial h(z) \neq \emptyset \}\) if there exist \(\zeta \in (0, +\infty ]\), a neighborhood U of \(\bar {z}\), and a continuous concave function \(\varphi : [0, \zeta ) \to \mathbb {R}_{+}\) such that

  1. (i)

    φ(0) = 0.

  2. (ii)

    φ(0) is C1 on (0,ζ).

  3. (iii)

    For all s ∈ (0,ζ), \(\varphi ^{\prime }(s) > 0\).

  4. (iv)

    For all zU satisfying \(h(\bar {z}) < h(z) < h(\bar {z}) + \zeta \), the KL inequality holds:

    $$ \varphi^{\prime}(h(z) - h(\bar{z})) \text{dist } (0,\partial h(z)) \geq 1. $$

    where \(\text{dist } (0,\partial h(z)) = \min \limits \{\| v \|: v \in \partial h(z) \}\).

For a proper, lower semi-continuous function h, we say it a KL function if it satisfies the KL property at all points in dom h. Examples of KL functions can be referred to [3, 4, 7]. It is known that a proper closed semi-algebraic function is a KL function.

Definition 3

[7] A subset \(\mathcal {X}\) of \(\mathbb {R}^{p}\) is a real semi-algebraic set if it can be represented as follows:

$$ \mathcal{X} = \bigcup\limits_{j=1}^{m}\bigcap\limits_{i=1}^{n} \left\{ z \in \mathbb{R}^{p}: g_{i,j}(z) = 0 \text{ and } h_{i,j}(z) < 0 \right\}. $$

where \(g_{i,j},h_{i,j}: \mathbb {R}^{p} \to \mathbb {R}\) are real polynomial functions. A function \(h :\mathbb {R}^{p} \to \mathbb {R}\cup \{+\infty \} \) is called semi-algebraic if its graph

$$ \text{Graph}_{h}:=\left\{(z, h(z)) \in \mathbb{R}^{p+1}: z \in \text{dom } h\right\} $$

is a semi-algebraic set.

We present some known basic properties of semi-algebraic sets and semi-algebraic functions below, which help identify semi-algebraic functions [7].

  • Finite intersections and unions of semi-algebraic sets are semi-algebraic.

  • The complementation of a semi-algebraic set is semi-algebraic.

  • Cartesian products of semi-algebraic sets are semi-algebraic.

  • Indicator functions of semi-algebraic sets are semi-algebraic.

  • Finite sums and products of semi-algebraic functions are semi-algebraic.

  • The composition of semi-algebraic functions is semi-algebraic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, T., Wu, C. & Liu, Z. A cubic spline penalty for sparse approximation under tight frame balanced model. Adv Comput Math 46, 36 (2020). https://doi.org/10.1007/s10444-020-09786-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10444-020-09786-y

Keywords

Navigation