[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Metamorphoses of Functional Shapes in Sobolev Spaces

  • Published:
Foundations of Computational Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we describe in detail a model of geometric-functional variability between fshapes. These objects were introduced for the first time by Charlier et al. (J Found Comput Math, 2015. arXiv:1404.6039) and are basically the combination of classical deformable manifolds with additional scalar signal map. Building on the aforementioned work, this paper’s contributions are several. We first extend the original \(L^2\) model in order to represent signals of higher regularity on their geometrical support with more regular Hilbert norms (typically Sobolev). We describe the bundle structure of such fshape spaces with their adequate geodesic distances, encompassing in one common framework usual shape comparison and image metamorphoses. We then propose a formulation of matching between any two fshapes from the optimal control perspective, study existence of optimal controls and derive Hamiltonian equations and conservation laws describing the dynamics of geodesics. Secondly, we tackle the discrete counterpart of these problems and equations through appropriate finite elements interpolation schemes on triangular meshes. At last, we show a few results of metamorphosis matchings on several synthetic and real data examples in order to highlight the key specificities of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. G. Allaire. Numerical analysis and optimization: an introduction to mathematical modelling and numerical simulation. Numerical Mathematics and Scientific Computation. Oxford Univ. Press, 2007.

  2. S. Allassonnière, A. Trouvé, and L. Younes. Geodesic Shooting and Diffeomorphic Matching Via Textured Meshes. 3757:365–381, 2005.

  3. S. Arguillere. The general setting of Shape Analysis. preprint, April 2015.

  4. S. Arguillere, E. Trélat, A. Trouvé, and L. Younes. Shape deformation analysis from the optimal control viewpoint. Journal de Mathématiques Pures et Appliquées, 104(1):139–178, July 2015.

    Article  MathSciNet  Google Scholar 

  5. S. Arguillere and E. Trélat. Sub-Riemannian structures on groups of diffeomorphisms. Journal of the Institute of Mathematics of Jussieu, pages 1–41, 2015.

  6. V. Arsigny, O. Commowick, X. Pennec, and N. Ayache. A Log-Euclidean Framework for Statistics on Diffeomorphisms. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2006, pages 924–931, 2006.

    Google Scholar 

  7. J. Ashburner. A fast diffeomorphic image registration algorithm. Elsevier, 38(95–113), 2007.

    Article  Google Scholar 

  8. T. Aubin. Nonlinear Analysis on Manifolds. Monge-Ampère Equations., volume 252 of Grundlehren der mathematischen Wissenschaften. 1982.

    Book  Google Scholar 

  9. M. Bauer, M. Bruveris, S. Marsland, and P. W. Michor. Constructing reparameterization invariant metrics on spaces of plane curves. Differential Geometry and its Applications, 34:139–165, 2014.

    Article  MathSciNet  Google Scholar 

  10. M. Bauer, M. Bruveris, and P. W. Michor. R-transforms for Sobolev H2-metrics on spaces of plane curves. Geometry, Imaging and Computing, 1(1):1–56, 2014.

    Article  MathSciNet  Google Scholar 

  11. M. Bauer, P. Harms, and P. W. Michor. Almost Local Metrics on Shape Space of Hypersurfaces in n-Space. SIAM J. Imaging Sci, 5(1):244–310, 2012.

    Article  MathSciNet  Google Scholar 

  12. M. F. Beg, M. I. Miller, A. Trouvé, and L. Younes. Computing large deformation metric mappings via geodesic flows of diffeomorphisms. International journal of computer vision, 61(139–157), 2005.

    Article  Google Scholar 

  13. M. Bruveris, L. Risser, and F.-X. Vialard. Mixture of Kernels and Iterated Semidirect Product of Diffeomorphisms Groups. Multiscale Modeling and Simulation, 10(4):1344–1368, 2012.

    Article  MathSciNet  Google Scholar 

  14. B. Charlier, N. Charon, and A. Trouvé. A short introduction to the functional shapes toolkit. https://github.com/fshapes/fshapesTk/, 2014–2015.

  15. B. Charlier, N. Charon, and A. Trouvé. The fshape framework for the variability analysis of functional shapes. Foundations of Computational Mathematics, 17(2):287–357, 2017.

    Article  MathSciNet  Google Scholar 

  16. N. Charon. Analysis of geometric and functional shapes with extensions of currents. Application to registration and atlas estimation. PhD thesis, ENS Cachan, 2013.

  17. N. Charon and A. Trouvé. The varifold representation of non-oriented shapes for diffeomorphic registration. SIAM journal of Imaging Science, 6(4):2547–2580, 2013.

    Article  Google Scholar 

  18. N. Charon and A. Trouvé. Functional currents: a new mathematical tool to model and analyse functional shapes. JMIV, 48(3):413–431, 2013.

    Article  Google Scholar 

  19. P. Dupuis, U. Grenander, and M. I. Miller. Variational problems on flows of diffeomorphisms for image matching. Quarterly of applied mathematics, 56(3):587, 1998.

    Article  MathSciNet  Google Scholar 

  20. S. Durrleman, P. Fillard, X. Pennec, Alain Trouvé, and Nicholas Ayache. Registration, atlas estimation and variability analysis of white matter fiber bundles modeled as currents. NeuroImage, 55(3):1073–1090, 2010.

    Article  Google Scholar 

  21. H. Federer. Geometric measure theory. Springer, 1969.

  22. F. Gay-Balmaz, T. Ratiu, and C. Tronci. Euler-Poincaré Approaches to Nematodynamics. Acta Applicandae Mathematicae, 120(1):127–151, 2012.

    Article  MathSciNet  Google Scholar 

  23. J. Glaunès, A. Trouvé, and L. Younes. Diffeomorphic matching of distributions: A new approach for unlabelled point-sets and sub-manifolds matching. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2:712–718, 2004.

    Google Scholar 

  24. J. Glaunès and M. Vaillant. Surface matching via currents. Proceedings of Information Processing in Medical Imaging (IPMI), Lecture Notes in Computer Science, 3565(381–392), 2006.

  25. E. Hebey. Nonlinear Analysis on Manifolds: Sobolev Spaces and Inequalities, volume 5 of Courant Lecture Notes.

  26. D. Holm. Euler-Poincaré Dynamics of Perfect Complex Fluids. Geometry, Mechanics and Dynamics, pages 169–180, 2002.

  27. D. Holm, A. Trouve, and L. Younes. The Euler-Poincare theory of Metamorphosis. Quart. Appl. Math, 67(2):661–685, 2009.

    Article  MathSciNet  Google Scholar 

  28. L. Hörmander. The Analysis of Linear Partial Differential Operators, volume 3. Springer, 2007.

  29. S.C. Joshi and M. I. Miller. Landmark matching via large deformation diffeomorphisms. Image Processing, IEEE Transactions on, 9(8):1357–1370, 2000.

    Article  MathSciNet  Google Scholar 

  30. I. Kaltenmark, B. Charlier, and N. Charon. A general framework for curve and surface comparison and registration with oriented varifolds. Computer Vision and Pattern Recognition (CVPR), 2017.

  31. C. Kurcyusz. On the existence and nonexistence of Lagrange multipliers in Banach spaces. Journal of Optimization Theory and Applications, 20(1):81–110, 1976.

    Article  MathSciNet  Google Scholar 

  32. S. Lee, N. Charon, B. Charlier, K. Popuri, E. Lebed, P.R Ramana, M. Sarunic, A. Trouvé, and M.F Beg. Atlas-based shape analysis and classification of retinal optical coherence tomography images using the functional shape (fshape) framework. Medical Image Analysis, 35:570–581, 2017.

    Article  Google Scholar 

  33. M. Miller, A. Trouvé, and L. Younes. Hamiltonian Systems and Optimal Control in Computational Anatomy: 100 Years Since D’Arcy Thompson. Annu Rev Biomed Eng, 7(17):447–509, Dec 2015.

    Article  Google Scholar 

  34. M. I. Miller and A. Qiu. The emerging discipline of computational functional anatomy. NeuroImage, 45:16–39, 2009.

    Article  Google Scholar 

  35. G. Nardi, B. Charlier, and A. Trouvé. The matching problem between functional shapes via a BV-penalty term: a \(\Gamma \)-convergence result. CoRR, arXiv:1503.07685, March 2015.

  36. C. Richardson and L. Younes. Computing metamorphoses between discrete measures. Journal of Geometric Mechanics, 5(1):131–150, 2013.

    Article  MathSciNet  Google Scholar 

  37. C. Richardson and L. Younes. Metamorphosis of images in reproducing kernel Hilbert spaces. Advances in Computational Mathematics, pages 1–31, 2015.

  38. D. Rueckert, L. I. Sonoda, C. Hayes, D. L. G. Hill, M. O. Leach, and D. J. Hawkes. Nonrigid registration using free-form deformations: application to breast MR images. IEEE Transactions on Medical Imaging, 18(8):712–721, 1999.

    Article  Google Scholar 

  39. L. Simon. Lecture notes on geometric measure theory. Australian National University, 1983.

  40. A. Trouvé and L. Younes. Metamorphoses through lie group action. Foundation of computational mathematics, 5:173–198, sep 2005.

    Article  MathSciNet  Google Scholar 

  41. T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache. Diffeomorphic demons: Efficient non-parametric image registration . NeuroImage, 45(1):61–72, 2009. Mathematics in Brain Imaging.

    Article  Google Scholar 

  42. F-X. Vialard, L. Risser, D. Rueckert, and C.J. Cotter. Diffeomorphic 3d image registration via geodesic shooting using an efficient adjoint calculation. International Journal of Computer Vision, 97(2):229–241, 2012.

    Article  MathSciNet  Google Scholar 

  43. L. Younes. Shapes and diffeomorphisms. Springer, 2010.

Download references

Acknowledgements

The authors would like to thank Sylvain Arguillère for many interesting discussions on the optimal control aspects of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Charon.

Additional information

Peter Olver.

Appendices

Proof of Theorem 1

Before the actual proof of Theorem 1, we shall introduce a few definitions and intermediate results. Let \(s\ge 0\) and \(s'=\max (s,1)\) and we recall that X is a compact submanifold of \(\mathbb {R}^n\) of dimension d and class \(C^{s}\) and that \(V\hookrightarrow C^{s'}_0(\mathbb {R}^n,\mathbb {R}^n)\). For a given coordinate system \((x^i)_{1\le i\le d}\), we will denote by \((\partial _{i})\) and \((dx^i)\) the corresponding frame and coframe, respectively. We introduce the following class of sections over the (ab) tensor bundle:

Definition 3

We say that \(A\in \varGamma _{{\text {pol}}}^{p,s}(T^a_b(U))\) with \(a,b,p,s \in \mathbb {N}\), \(a,b\le s\) and \(p<s'\) if there exists a coordinate system \((x^i)_{1\le i\le d}\) on U such that for any \((\phi ,u)\in {{\mathrm{Diff}}}^s_0(\mathbb {R}^n)\times U\)

$$\begin{aligned} A(\phi ,u)=A^\alpha _\beta (\phi ,u)\partial ^a_\alpha \otimes dx^\beta \end{aligned}$$

where for any compact \(K\subset U\) there exists two polynomials P and Q such that for any multi-indices \(\alpha ,\beta \) and for any \(\phi ,\phi '\in {{\mathrm{Diff}}}^{s}_0\) we have

$$\begin{aligned} u\mapsto A^\alpha _\beta (\phi ,u))\in C^p(U,\mathbb {R})\text {, } \sup _{K,k\le p}|\partial ^kA^\alpha _\beta (\phi ,u)|\le P(\rho _{s}(\phi ))\,, \end{aligned}$$

and

$$\begin{aligned} \sup _{K,k\le p}|\partial ^kA^\alpha _\beta (\phi ,u)-\partial ^kA^\alpha _\beta (\phi ',u)|\le \rho _{s}(\phi '\circ \phi ^{-1})Q(\rho _{s}(\phi ),\rho _{s}(\phi ')) \end{aligned}$$

with the notation \(\rho _s(\psi )\doteq \sum _{k\le s} \Vert d^k (\psi -{{\mathrm{Id}}})\Vert _\infty +\Vert d^k(\psi ^{-1}-{{\mathrm{Id}}})\Vert _\infty \) for any \(\psi \in {{\mathrm{Diff}}}^s_0(\mathbb {R}^n)\).

In the previous, we point out that \(\alpha \) and \(\beta \) are multi-indices of integers between 1 and d such that \(|\alpha |=a, \ |\beta |=b\). When \(a=b=0\), the space \(\varGamma _{{\text {pol}}}^{p,s}(T^a_b(U))\) will be denoted \(C_{{\text {pol}}}^{p,s}(U)\).

Remark 5

A first important remark is that the definition is not dependent on the choice of the coordinate system. Indeed, if \(s=0\), we have \(a=b=p=0\) and the definition does not depend on any coordinate system. If \(s=1\) then \(p=0\) and if \((y_1,\ldots ,y^d)\) is another coordinate system, it is sufficient to notice that \(\frac{\partial }{\partial x^i}=\frac{\partial y^j}{\partial x^i}\frac{\partial }{\partial y_j}\) and \(dx^i=\frac{\partial x^i}{\partial y^j}dy^j\) where the mappings \(\frac{\partial y^j}{\partial x^i}\) and \(\frac{\partial x^i}{\partial y^j}\) are continuous and bounded on K. Last, if \(s\ge 2\), we get \(\tilde{A}^{\tilde{\alpha }}_{\tilde{\beta }}(\phi ,u)\frac{\partial ^a}{\partial y^{\tilde{\alpha }}}\otimes dy^{\tilde{\beta }}=A^\alpha _\beta (\phi ,u)\frac{\partial ^a}{\partial x^\alpha }\otimes dx^\beta \) for \(\tilde{A}^{\tilde{\alpha }}_{\tilde{\beta }}(\phi ,u)=A^\alpha _\beta (\phi ,u)\frac{\partial y^{\tilde{\alpha }}}{\partial x^\alpha }\frac{\partial x^\beta }{\partial y^{\tilde{\alpha }}}\) with \(\frac{\partial y^{\tilde{\alpha }}}{\partial x^\alpha }=\prod _{i=1}^a\frac{\partial y^{{\tilde{\alpha }}_i}}{\partial x^{\alpha _i}}\in C^{s-1}(U,\mathbb {R})\) and \(\frac{\partial x^\beta }{\partial y^{\tilde{\beta }}}=\prod _{i=1}^b\frac{\partial x^{\beta _i}}{\partial y^{{\tilde{\beta }}_i}}\in C^{s-1}(U,\mathbb {R})\). Since \(p\le s-1\), we deduce that \(\tilde{A}^{\tilde{\alpha }}_{\tilde{\beta }}(\phi ,u)\in C^p(U,\mathbb {R})\) for any \(({\tilde{\alpha }},{\tilde{\beta }})\) and satisfies the needed polynomial controls in the coordinate system \((y^1,\ldots ,y^d)\) thanks to the Faà di Bruno Formula.

A second useful remark is that \(C_{{\text {pol}}}^{p,s}(U)\) is an algebra over the field \(\mathbb {R}\).

Lemma 4

Assume here that \(s\ge 2\). For any coordinate system \((x^i)_{1\le i\le d}\) on an open set \(U\subset X\), we have for any \(1\le i\le d\) that

$$\begin{aligned} \nabla \partial _i\in \varGamma _{{\text {pol}}}^{s-2,s}(T^1_1(U))\text { and }\nabla dx^i\in \varGamma _{{\text {pol}}}^{s-2,s}(T^0_2(U)) \end{aligned}$$

where for \(\phi \in {{\mathrm{Diff}}}^s_0(\mathbb {R}^n)\), \(\nabla =\nabla ^\phi \) is the Levi–Civita covariant derivative associated with the pullback metric \(g=g^\phi \) on X of the induced metric \(g^{\phi (X)}\) on \(Y=\phi (X)\) by the Euclidean metric on \(\mathbb {R}^n\).

Proof

First we have \(\nabla \partial _j=\varGamma ^l_{ij}\partial _l\otimes dx^i\) where the \(\varGamma ^l_{ij}\) are the Christoffel symbols of second kind so that it is sufficient to prove that \(\varGamma ^k_{ij}\in C_{{\text {pol}}}^{s-2,s}(U)\). For given \(\phi \in G_V\), as a function of \(u\in U\) we have \(g_{ij}=\langle d \phi .\partial _i,d\phi .\partial _j\rangle \in C^{s-1}(U,\mathbb {R})\). Using the chain rule, we get easily for \(u\in K\) that, for any \(k\le s-1\), \(|\partial ^kg_{ij}|\le P_k(\Vert \phi \Vert _{k+1,\infty })\) where P is a polynomial. Moreover, introducing \(\psi =\phi '\circ \phi ^{-1}-{{\mathrm{Id}}}\),

$$\begin{aligned} g_{ij}(\phi ')-g_{ij}(\phi )&=\langle d(\psi +{{\mathrm{Id}}})\circ \phi \cdot d\phi \cdot \partial _i,d(\psi +{{\mathrm{Id}}})\circ \phi \cdot d\phi \cdot \partial _j\rangle \\&\quad -\langle d \phi \cdot \partial _i,d\phi \cdot \partial _j\rangle \\&=\langle d\psi \circ \phi \cdot d\phi \cdot \partial _i,d\psi \circ \phi \cdot d\phi \cdot \partial _j\rangle +\langle d\phi \cdot \partial _i,d\psi \circ \phi \cdot d\phi \cdot \partial _j\rangle \\&\quad +\langle d\psi \circ \phi \cdot d\phi \cdot \partial _i,d\phi \cdot \partial _j\rangle \end{aligned}$$

we get that \(|\partial ^kg_{ij}(\phi ')-\partial ^kg_{ij}(\phi )|\le \Vert \psi \Vert _{k+1,\infty }Q_k(\Vert \psi \Vert _{k+1,\infty },\Vert \phi \Vert _{k+1,\infty })\) and we deduce immediately that \(g_{ij}\in C_{{\text {pol}}}^{s-1,s}(U)\).

We need now a similar control for the cometric \(g^{ij}\). Denoting \(\varvec{g} =(g_{ij})_{1\le i,j\le d}\), we have \(\varvec{g} ^{-1}=(g^{ij})_{1\le i,j\le d}\) and \(\varvec{g} ^{-1}={{\mathrm{com}}}(\varvec{g} )^T/\det (\varvec{g} )\) where \({{\mathrm{com}}}(\varvec{g} )\) is the comatrix of the matrix \(\varvec{g} \). Since \({{\mathrm{com}}}(\varvec{g} )^T\) is a polynomial expression in the coefficients \(g_{ij}\) we get, using the algebra structure property of Remark 5, that all the coefficients of \({{\mathrm{com}}}(\varvec{g} )\) are in \(C_{{\text {pol}}}^{s-1,s}(U)\). Similarly, \(\det (\varvec{g} )\in C_{{\text {pol}}}^{s-1,s}(U)\) so that, in order to get \(\det (\varvec{g} )^{-1}\in C_{{\text {pol}}}^{s-1,s}(U)\), it is sufficient to prove that for any compact \(K\subset U\), there exists a polynomial P such that

$$\begin{aligned} \det (\varvec{g} )^{-1}\le P(\rho _{s}(\phi ))\,. \end{aligned}$$
(40)

However, since \(T_{\phi (u)}Y=\text {Span}\{d\phi (u)\cdot \partial _i,\ 1\le i\le d\}\) where \(Y=\phi (X)\), then for \((e_1,\ldots ,e_d)\) an orthonormal basis of \(T_{\phi (u)}Y\), we have \(\det (\varvec{g} )^{-1}=\det ((\langle d\phi ^{-1}(\phi (u)).e_i,d\phi ^{-1}(\phi (u)).e_j\rangle )_{ij})\le \Vert d\phi ^{-1}\Vert ^{2d}_\infty \). Using the fact that \(\varGamma ^k_{ij}=\frac{1}{2}(\partial _ig_{mj}+\partial _j g_{mi}-\partial _mg_{ij})g^{mk}\) we get immediately that \(\varGamma ^{k}_{ij}\in C_{{\text {pol}}}^{s-2,s}(U)\) and \(\nabla \partial _i\in \varGamma _{{\text {pol}}}^{s-2,s}(T^1_1(U))\). Now since \(0=\nabla (dx^i(\partial _j))=\nabla dx^i(\partial _j)+dx^i(\nabla \partial _j)\) we get \(\nabla dx^i(\partial _j)=-\varGamma ^i_{lj}dx^l\) and \(\nabla dx^i=-\varGamma ^i_{lj}dx^j\otimes dx^l\). Since we have just proved that \(\varGamma ^i_{lj}\in C_{{\text {pol}}}^{s-2,s}(U)\), we get the result. \(\square \)

Lemma 5

Let \(\mathcal {I}=\{\ (\alpha ,\beta )\ |\ \alpha \in \llbracket 1,d\rrbracket ^a,\ \beta \in \llbracket 1,d\rrbracket ^b,\ 1\le a<b\le s\ \}\) and \((x^i)_{1\le i\le d}\) be a coordinate system defined on an open set \(U\subset X\).

There exists a family of functions \((c^\alpha _\beta )_{(\alpha ,\beta )\in \mathcal {I}}\) such that

  1. 1.

    for any \((\alpha ,\beta )\in \mathcal {I}\), we have \(c^\alpha _\beta \in C_{{\text {pol}}}^{s-(1+|\beta |-|\alpha |),s}(U)\subset C_{{\text {pol}}}^{0,s}(U)\)

  2. 2.

    for any \(0\le k\le s\) any \(f\in H^k_{loc}(U)\) and any \(\beta \in \llbracket 1,d\rrbracket ^k\), we have (a.e.) on U

    $$\begin{aligned} \partial ^k_\beta f=\nabla ^k_\beta f+\sum _{l=1}^{k-1}\sum _{\alpha ,|\alpha |=l}c^\alpha _\beta \nabla ^l_\alpha f \end{aligned}$$
    (41)

where for \(s\ge 1\) and \(\phi \in {{\mathrm{Diff}}}^s_0(\mathbb {R}^n)\), \(\nabla =\nabla ^\phi \) is Levi–Civita covariant derivative associated with the pullback metric \(g=g^\phi \) on X on the Euclidean metric on \(\phi (X)\) and where \(\partial ^k_\beta f=\partial ^k\!f(\partial ^k_\beta )\) and \(\nabla ^l_\alpha f=\nabla ^l\! f(\partial ^l_\alpha )\).

Proof

For \(k=0\) or \(k=1\) the result is trivial. Let consider a proof by induction for \(k\ge 1\). We have for \(\beta \in \llbracket 1,d\rrbracket ^k\) and \({\tilde{\beta }}=(i,\beta )\) that

$$\begin{aligned} \partial ^{k+1}_{\tilde{\beta }}f=\partial _i(\partial ^k_\beta f)=\partial _i\left[ \nabla ^k_\beta f+\sum _{l=1}^{k-1}\sum _{\alpha ,|\alpha |=l}c^\alpha _\beta \nabla ^l_\alpha f\right] \,. \end{aligned}$$

However, \(\partial _i(\nabla ^k_\beta f)=\nabla ^{k+1}_{\tilde{\beta }}f+\nabla ^k f(\nabla _{\partial _i}\partial ^k_\beta )\). Moreover, since we have

$$\begin{aligned} \nabla _{\partial _i}\partial ^k_\beta =\sum _{l=1}^k\otimes _{j=1}^{l-1}\partial _{\beta _l}\otimes \nabla _{\partial _i} \partial _{\beta _l}\otimes _{j=l+1}^{k}\partial _{\beta _j}=\sum _{l=1}^k\varGamma _{i\beta _l}^m\otimes _{j=1}^{l-1}\partial _{\beta _j}\otimes \partial _{m}\otimes _{j=l+1}^{k}\partial _{\beta _j} \end{aligned}$$

we get that \(\nabla _{\partial _i}\partial ^k_\beta \in \varGamma _{{\text {pol}}}^{s-2,s}(T^k_0(U))\) and \(\nabla ^k f(\nabla _{\partial _i}\partial ^k_\beta )\) can be written as \(\sum _{\alpha ,|\alpha |=k}c^\alpha _{\tilde{\beta }}\nabla ^k_\alpha f\) for functions \(c^\alpha _{\tilde{\beta }}\in C_{{\text {pol}}}^{s-2,s}(U)\). Similarly, we have for \(1\le l\le k\) and \(\alpha \in \llbracket 1,d\rrbracket ^l\) that

$$\begin{aligned} \partial _i(c^\alpha _\beta \nabla ^l_\alpha f)=\partial _i(c^\alpha _\beta )\nabla ^l_\alpha f+ c^\alpha _\beta \nabla ^{l+1}_{(i,\alpha )}f+c^\alpha _\beta \nabla ^lf(\nabla _{\partial _i}\partial ^l_\alpha ). \end{aligned}$$

Denoting \(c^\alpha _{{\tilde{\beta }},1}=\partial _i(c^\alpha _\beta )\in C_{{\text {pol}}}^{s-(1+|{\tilde{\beta }}|-|\alpha |),s}(U)\), \(c^{(i,\alpha )}_{{\tilde{\beta }},2}=c^\alpha _\beta \in C_{{\text {pol}}}^{s-(1+|\beta |-|\alpha |),s}(U)=C_{{\text {pol}}}^{s-(1+|{\tilde{\beta }}|-|(i,\alpha )|),s}(U)\) and since \(\nabla _{\partial _i}\partial ^l_\alpha \in \varGamma _{{\text {pol}}}^{s-2,s}(T^{l+1}_0(U))\), \(c^\gamma _{{\tilde{\beta }},3}=c^\alpha _\beta dx^\gamma (\nabla _{\partial _i}\partial _\alpha ^l)\in C_{{\text {pol}}}^{s-(1+|\beta |-l),s}(U)\subset C_{{\text {pol}}}^{s-(1+|{\tilde{\beta }}|-|\gamma |),s}(U)\) we get that \(\partial _i(c^\alpha _\beta \nabla ^l_\alpha f)\) can be written as \(\sum _{m=l}^{l+1}\sum _{\gamma ,|\gamma |=m}c^\gamma _{{\tilde{\beta }}}\nabla ^m_\gamma f\) for some appropriate functions \(c^\gamma _{\tilde{\beta }}\in C_{{\text {pol}}}^{s-(1+|{\tilde{\beta }}|-|\gamma |),s}(U)\) and decomposition (41) holds for the rank \(k+1\). \(\square \)

We finally get to the main result itself.

Proof of Theorem 1

The starting point is to recast the Sobolev norm on \(Y=\phi (X)\) as an integral on X through the pullback metric and pullback covariant derivative. Up to the introduction of a finite partition of unity \((\chi _l)\) subordinated to finite covering of X with charts \((U_l,\psi _l)\), we can restrict to one open set \(U=U_l\) and show that for \(\chi =\chi _l\) and \(K=\text {supp}(\rho )\), there exists a polynomial P such that

$$\begin{aligned} \sum _{k=0}^s\int _K \chi .g^0_k(\nabla ^k f,\nabla ^k f){{\mathrm{vol}}}(g)\le P(\rho _s(\phi ))\sum _{k=0}^s\int _K \chi .\overline{g}^0_k(\overline{\nabla }^k f,\overline{\nabla }^k f){{\mathrm{vol}}}(\overline{g}) \end{aligned}$$
(42)

where \(\overline{g}=g^{\text {Id}}\) and \(\overline{\nabla }=\nabla ^{\text {Id}}\). For \(s=0\) the results comes from the inequalities (40). Let assume that \(s\ge 1\) (and thus \(s'=s\)). From Lemma 5, there exists universal functions \(c^\alpha _\beta \in C_{{\text {pol}}}^{0,s}(U)\) for any pair \((\alpha ,\beta )\in \mathcal {I}\) such that \(\partial ^k_\beta f=\nabla ^k_\beta f+\sum _{l=1}^{k-1}\sum _{\alpha ,|\alpha |=l}c^\alpha _\beta \nabla ^l_\alpha f\). In particular, if we denote \(\mathcal {J}\doteq \{(k,\gamma )\ |\ 0\le k\le d,\ \gamma =\llbracket 1,d\rrbracket ^k\ \}\), \(\varvec{f} =(\partial ^k_\gamma f)_{(k,\gamma )\in \mathcal {J}}\) and \(\varvec{\tilde{f}} =(\nabla ^k_\gamma f)_{(k,\gamma )\in \mathcal {J}}\), then there exists \(\varvec{M} \in C_{{\text {pol}}}^{0,s}(U,L(\mathbb {R}^\mathcal {J},\mathbb {R}^\mathcal {J}))\) (invertible since triangular with ones on the diagonal) with coefficients in \(C_{{\text {pol}}}^{0,s}(U)\) such that \(\varvec{f} =\varvec{M} \varvec{\tilde{f}} \). Moreover, since \(\sum _{k=0}^sg^0_k(\nabla ^k f,\nabla ^k f){{\mathrm{vol}}}(g)\) can be rewritten as \(\varvec{q}(\varvec{\tilde{f}} )\) where \(\varvec{q}\) is a non-degenerate positive quadratic form continuously depending on the location \(u\in U\) and coefficients in \(C_{{\text {pol}}}^{s-1,s}(U)\subset C_{{\text {pol}}}^{0,s}(U)\), we get that there exists a polynomial \(\tilde{P}\) such that \(\varvec{q}(\varvec{\tilde{f}} )=\varvec{q}(\varvec{M} ^{-1}\varvec{f} )\le P(\rho _s(\phi ))|\varvec{f} |^2\) so that

$$\begin{aligned} \sum _{k=0}^s\int _K \chi .g^0_k(\nabla ^k f,\nabla ^k f){{\mathrm{vol}}}(g)\le \tilde{P}(\rho _s(\phi ))\sum _{k=0}^s\int _K \chi .|\partial ^k f|^2\mathrm{d}x. \end{aligned}$$

Furthermore, considering \(\varvec{M} \) for \(\phi =\text {Id}\) there exists a constant \(R\ge 0\) such that we have \(\sum _{k=0}^s\int _K \chi .|\partial ^k f|^2\mathrm{d}x\le R\sum _{k=0}^s\int _K \chi .\overline{g}^0_k(\overline{\nabla }^k f,\overline{\nabla }^k f){{\mathrm{vol}}}(\overline{g})\) so that (42) holds with \(P=R\tilde{P}\) and we have obtained Theorem 1. \(\square \)

We conclude this appendix by adding an extra property of continuity with respect to \(\phi \) of the pullback \(H^s\) metrics, which is used in the proof of Theorem 2. From the previous developments, we get that for any chart \((U,\varphi )\) on X associated with a coordinate system \((x^1,\ldots ,x^d)\) on U there exists a family of functions \(c^\alpha _{\beta }\) such that for any \(f\in H^s_{loc}(U)\)

$$\begin{aligned} \partial ^k_\beta f=\nabla ^k_\beta f+\sum _{l=1}^{k-1}\sum _{\alpha ,|\alpha |=l}c^\alpha _\beta \nabla ^l_\alpha f\,. \end{aligned}$$
(43)

Let us denote \(E\doteq \bigoplus _{k=0}^s ({\mathop {\otimes }\limits ^{k}}T^*X)\), E is a \(C^{s-1}\) vector bundle over X. For any local chart \((U,\varphi )\) with coordinate functions \((x^1,\ldots ,x^d)\), \((q_k(dx^\beta ))_{\beta \in \llbracket 1,d\rrbracket ^k,1\le k\le d}\) is a local frame of E over U where \(q_k:{\mathop {\otimes }\limits ^{k}}T^*X\rightarrow E\) denotes the canonical embedding. We will also consider \({{\mathrm{End}}}(E)\rightarrow X\) the endomorphism vector bundle where \({{\mathrm{End}}}(E)_x\doteq {{\mathrm{End}}}(E_x)\).

Definition 4

We say that \(M\in \varGamma ^{0,s}({{\mathrm{End}}}(E))\) where \(M:{{\mathrm{Diff}}}^s_0(\mathbb {R}^n)\rightarrow \varGamma ^0({{\mathrm{End}}}(E)))\) if for any coordinate system \((x^1,\ldots ,x^d)\) defined on a open set \(U\subset M\), all the coefficients of M in the local frame \((dx^\beta )_\beta \) are in \(C_{{\text {pol}}}^{0,s}(U)\).

Definition 5

We say that \(G\in \varGamma ^{0,s}(E^*\otimes E^*)\) where \(G:{{\mathrm{Diff}}}^s_0(\mathbb {R}^n)\rightarrow \varGamma ^0(E^*\otimes E^*)\) if for any coordinate system \((x^1,\ldots ,x^d)\) defined on a open set \(U\subset M\), all the coefficients of G in the local frame \((q_k(\partial ^k_\alpha )\otimes q_{k'}(\partial ^{k'}_{\alpha '}))\) for \(0\le k,k'\le s\) and \((\alpha ,\alpha ')\in \llbracket 1,d\rrbracket ^k\times \llbracket 1,d\rrbracket ^{k'}\) are in \(C_{{\text {pol}}}^{0,s}(U)\), where \(q_k:{\mathop {\otimes }\limits ^{k}}TM\rightarrow E^*\) is the canonical embedding.

Now, writing

$$\begin{aligned} \Vert f\Vert _{H^{s,\phi }(X)} \doteq \Vert f \circ \phi ^{-1} \Vert _{H^s(\phi (X))} \end{aligned}$$

as the pullback \(H^s\) metric on X induced by \(\phi \in {{\mathrm{Diff}}}^s_0(\mathbb {R}^n)\), we have the following property:

Lemma 6

For any \(f\in H^{s}(X)\), the application \({{\mathrm{Diff}}}^s_0(\mathbb {R}^n) \rightarrow \mathbb {R}_{+}\), \(\phi \mapsto \Vert f\Vert _{H^{s,\phi }(X)}\) is continuous.

Proof

Let us introduce \(p_E:{{\mathrm{Diff}}}^s_0(\mathbb {R}^n)\times H^s(X)\rightarrow L^2(X,E)\) such that

$$\begin{aligned} p_E(\phi ,f)\doteq \bigoplus _{k=0}^s q_k(\nabla ^k f) \end{aligned}$$

where \(\nabla =\nabla ^\phi \) for \(\phi \in {{\mathrm{Diff}}}^s_0(\mathbb {R}^n)\) as well as the pullback of the metric \(g_E(\phi )\doteq \oplus _{k=0}^s g^0_k\) with once again \(g=g^\phi \). Then, we have by definition

$$\begin{aligned} \Vert f\Vert _{H^{s,\phi }(X)}^2=\int _X g_E(\phi )\left( p_E(\phi ,f),p_E(\phi ,f)\right) {{\mathrm{vol}}}(g^\phi ) \ . \end{aligned}$$

Now, with (43), we see that there exists \(M\in \varGamma ^{0,s}({{\mathrm{End}}}(E))\) such that \(p_E(\phi ,f)=M(\phi )\cdot p_E({{\mathrm{Id}}},f)\). Similarly, thanks to the previously derived expressions of the metric \(g^\phi \), we have \(g_E\in \varGamma ^{0,s}(E^*\otimes E^*)\) and thus there exists \(S\in \varGamma ^{0,s}({{\mathrm{End}}}(E))\) such that

$$\begin{aligned}&\int _X g_E(\phi )\left( p_E(\phi ,f),p_E(\phi ,f)\right) {{\mathrm{vol}}}(g^\phi )=\int _X \overline{g}_E\left( S(\phi )\cdot p_E(\phi ,f),p_E(\phi ,f)\right) {{\mathrm{vol}}}(\overline{g})\\&\quad =\int _X \overline{g}_E\left( S(\phi )\cdot M(\phi )\cdot \overline{p}_E(f),M(\phi )\cdot \overline{p}_E(f)\right) {{\mathrm{vol}}}(\overline{g})\\&\quad =\int _X \overline{g}_E\left( \varLambda (\phi )\cdot \overline{p}_E(f),\overline{p}_E(f)\right) {{\mathrm{vol}}}(\overline{g}) \end{aligned}$$

with \(\varLambda \in \varGamma ^{0,s}({{\mathrm{End}}}(E))\) and \(\overline{g}_E=g_E({{\mathrm{Id}}})\), \(\overline{p}_E(f) = p_E({{\mathrm{Id}}},f)\). Since the coefficients of \(\varLambda \) in a local frame belong to \(C_{{\text {pol}}}^{0,s}\), they are in particular continuous with respect to \(\phi \) for the norm of uniform convergence of \(\phi \) and its derivatives up to order s on the compact X. As a consequence, if \(\phi ^n \rightarrow \phi \), then \(\varLambda (\phi ^n) \rightarrow \varLambda (\phi )\) in \(\varGamma ^0({{\mathrm{End}}}(E))\) and:

$$\begin{aligned} \Vert f\Vert _{H^{s,\phi ^n}(X)}^2 \xrightarrow [n\rightarrow \infty ]{} \int _X \overline{g}_E\left( \varLambda (\phi )\cdot \overline{p}_E(f),\overline{p}_E(f)\right) {{\mathrm{vol}}}(\overline{g}) = \Vert f\Vert _{H^{s,\phi }(X)}^2 \end{aligned}$$

which completes the proof. \(\square \)

Proof of Theorem 6

The proof follows similar steps as the pure diffeomorphic case derived in [5]. Let us introduce the total cost functional:

$$\begin{aligned} J(q,\check{f},v,\check{h})&= \int _0^1 \left[ \tfrac{\gamma _V}{2} \Vert v_t\Vert _{V}^2 +\tfrac{\gamma _f}{2} \Vert \check{h_t}\Vert _{H^s_q}^2 \right] \mathrm{d}t +g(q_1,\check{f_1}) \\&=\int _0^1 L(q_t,v_t,\check{h}_t)\mathrm{d}t +g(q_1,\check{f_1}) \end{aligned}$$

where L is by definition the Lagrangian function. It is differentiable with respect to \(v \in V\), \(\check{h} \in H^s(M)\) as well as \(q \in C^{s'}(M,\mathbb {R}^n)\) since \(s'\ge s\). The variation of J writes:

$$\begin{aligned}&\Big (\delta J(q,\check{f},v,\check{h})\Big |(\delta q, \delta \check{f},\delta v, \delta \check{h})\Big ) \\&=\int _0^1 \left[ \Big (\partial _q L(q_t,v_t,\check{h}_t)\Big |\delta q_t\Big ) + \Big (\partial _{v} L(q_t,v_t,\check{h}_t)\Big |\delta v_t\Big ) + \Big (\partial _{\check{h}} L(q_t,v_t,\check{h}_t)\Big |\delta \check{h}_t\Big )\right] \mathrm{d}t \\&\qquad + \Big (\partial _{q}g(q_1,\check{f_1})\Big |\delta q_1\Big ) + \Big (\partial _{\check{f}}g(q_1,\check{f_1})\Big |\delta \check{f}_1\Big ) \end{aligned}$$

Note that the previous expression involves different duality brackets, in \((C^{s'}(M,\mathbb {R}^n)^*,C^{s'}(M,\mathbb {R}^n))\) for variation with respect to \(\delta q\), in \((V^*,V)\) for the variation with respect to \(\delta v\) and in \((H^{s}(M)^*,H^s(M))\) for the variation with respect to \(\delta \check{h}\) and \(\delta \check{f}\). Formally, the optimality of solutions \((q_t,\check{f}_t,v_t,\check{h}_t)\) means that \(\delta J\) should vanish under variations satisfying the control evolutions \(\dot{q_t} = \xi _{q_t}v_t\) and \(\dot{\check{f_{t}}} = \check{h}_t\).

Let \(H_{(q_0,\check{f}_0)}^{1}([0,1],C^{s'}(M,\mathbb {R}^n)\times H^s(M))\) be the space of time-dependent states with \(H^1\) regularity in time and initial conditions \((q_0,\check{f}_0)\). We define the constraint application

$$\begin{aligned}&\varUpsilon : \ H_{(q_0,\check{f}_0)}^{1}([0,1],C^{s'}(M,\mathbb {R}^n)\times H^s(M)) \times L^2([0,1],V\times H^s(M)) \\&\quad \rightarrow L^2([0,1],C^{s'}(M,\mathbb {R}^n)) \times L^2([0,1],H^s(M)) \end{aligned}$$

by \(\varUpsilon (q,\check{f},v,\check{h}) \doteq (\dot{q}-\xi _{q}v,\dot{\check{f}}- \check{h})\). It is clearly differentiable with respect to \(\check{f},v\) and \(\check{h}\). Now, since it is assumed that \(V\hookrightarrow \varGamma ^{s+1}\), the application \(q \mapsto \xi _q v = v \circ q\) is differentiable with respect to \(q \in C^{s'}(M,\mathbb {R}^n)\) and equal to \((\partial _q \xi _q v | \delta q) = d_{q} v(\delta q)\). It results that \(\varUpsilon \) is differentiable with respect to q as well.

With these notations, we are considering minimizers of J in the constraint set \(\varUpsilon ^{-1}(\{0\})\). In order to invoke Lagrange multipliers theorem in this infinite-dimensional setting (Theorem 4.1 in [31]), it needs to be checked that \(d_{(q,\check{f},v,\check{h})}\varUpsilon \) is surjective for all \((q,\check{f},v,\check{h})\). Writing \(\varUpsilon _{1}(q,v) = \dot{q}-\xi _{q}v\) and \(\varUpsilon _{2}(\check{f},\check{h}) = \dot{\check{f}}- \check{h}\), we have from Lemma 3 of [5] that \(d_{(q,v)}\varUpsilon _1\) is surjective and it is straightforward to verify that so is \(d_{(\check{f},\check{h})}\varUpsilon _2\). We deduce the existence of Lagrange multipliers \(p \in L^2([0,1],C^{s'}(M,\mathbb {R}^n))^*\) and \(p^f \in L^2([0,1],H^s(M))^*\) such that:

$$\begin{aligned} 0&= \Big (d_{(q,\check{f},v,\check{h})}J + (d_{(q,\check{f},v,\check{h})}\varUpsilon )^*(p,p^f) \Big | (\delta q,\delta \check{f},\delta v, \delta \check{h}) \Big ) \nonumber \\&= (p|\dot{\delta q}) - (p|\partial _q \xi _q v.\delta q) - (p|\xi _q \delta v) + (p^f|\dot{\delta \check{f}}) - (p^f|\delta \check{h}) \nonumber \\&\quad +\int _0^1 \left[ (\partial _q L(q_t,v_t,\check{h}_t)|\delta q_t) + (\partial _{v} L(q_t,v_t,\check{h}_t)|\delta v_t) + (\partial _{\check{h}} L(q_t,v_t,\check{h}_t)|\delta \check{h}_t)\right] \mathrm{d}t \nonumber \\&\quad + (\partial _{q}g(q_1,\check{f_1})|\delta q_1) + (\partial _{\check{f}}g(q_1,\check{f_1})|\delta \check{f}_1) \end{aligned}$$
(44)

Moreover, as \(H^s(M)\) is reflexive, it satisfies the Radon–Nikodym property and we have \(L^2([0,1],H^s(M))^* = L^2([0,1],H^s(M)^*)\) which allows to identify \(p^f\) as a square-integrable function in \(H^s(M)^*\). The case of the geometric momentum p is, however, slightly more involved but was addressed separately in Lemma 4 of [5], leading to an equivalent identification \(p \in L^2([0,1],C^{s'}(M,\mathbb {R}^n)^*)\). It is then straightforward from the expression of the Hamiltonian in (20) that \(\dot{q_t} = \xi _{q_t} v_t = \partial _p H(q_t,\check{f}_t,p_t,p_t^{f},v_t,\check{h}_t)\) and \(\dot{\check{f}} = \check{h}_t = \partial _{p^f} H(q_t,\check{f}_t,p_t,p_t^{f},v_t,\check{h}_t)\).

Considering the variation on \(\delta q\) only (i.e., with \(\delta v = 0\), \(\delta \check{f} = 0\) and \(\delta \check{h} =0\)) in (44), we obtain for all \(\delta q \in C^s(M,\mathbb {R}^n)\):

$$\begin{aligned} (p|\dot{\delta q})&= (p|\partial _q \xi _q v.\delta q)-\int _0^1 (\partial _q L(q_t,v_t,\check{h}_t)|\delta q_t) \mathrm{d}t - (\partial _{q}g(q_1,\check{f_1})|\delta q_1) \nonumber \\&=\int _0^1 (p_t|(\partial _{q} \xi _{q_t} v_t)(\delta q_t)) \mathrm{d}t - \int _0^1 (\partial _q L(q_t,v_t,\check{h}_t)|\delta q_t) \mathrm{d}t - (\partial _{q}g(q_1,\check{f_1})|\delta q_1) \nonumber \\&=\int _0^1 (\underbrace{(\partial _{q} \xi _{q_t} v_t)^*p_t-\partial _q L(q_t,v_t,\check{h}_t)}_{\doteq \alpha _t}|\delta q_t) \mathrm{d}t - (\partial _{q}g(q_1,\check{f_1})|\delta q_1) \end{aligned}$$
(45)

Let’s denote \(r_t = \dot{\delta q}_t\) so that \(\delta q_t = \int _{0}^{t} r_s \mathrm{d}s\) and:

$$\begin{aligned} \int _0^1 (\alpha _t|\delta q_t) \mathrm{d}t&= \int _0^1 \int _0^t (\alpha _t|r_s) \mathrm{d}t \\&= \int _{0}^1 \left( \int _{s}^1 \alpha _t \mathrm{d}t \Big | r_s \right) \mathrm{d}s \end{aligned}$$

This together with (45) shows that \(p_t = \int _{t}^1 \alpha _s \mathrm{d}s - \partial _{q}g(q_1,\check{f_1})\) for almost all \(t\in [0,1]\). Now since \(\alpha \in L^2([0,1],C^{s'}(M,\mathbb {R}^n)^*) \subset L^1([0,1],C^{s'}(M,\mathbb {R}^n)^*)\), it results that \(p \in H^1([0,1],C^{s'}(M,\mathbb {R}^n)^*)\) and:

$$\begin{aligned} \dot{p}_t = -\alpha _{t} = \partial _q L(q_t,v_t,\check{h}_t) - (\partial _{q} \xi _{q_t} v_t)^*p_t = -\partial _q H(q_t,\check{f}_t,p_t,p_t^{f},v_t,\check{h}_t) \end{aligned}$$

with the endpoint condition \(p_1 = -\partial _{q}g(q_1,\check{f_1})\).

Similarly, the variation with respect to \(\delta \check{f}\) in (44) leads to:

$$\begin{aligned} (p^f|\dot{\delta \check{f}}) + (\partial _{\check{f}}g(q_1,\check{f_1})|\delta \check{f}_1) =0 \end{aligned}$$

If we write \(\rho _t = \dot{\delta \check{f_t}}\), we obtain:

$$\begin{aligned} \int _0^1 \left( p^f_t + \partial _{\check{f}}g(q_1,\check{f_1}) \big | \rho _t \right) \mathrm{d}t =0 \end{aligned}$$

which thus holds for all \(\rho \in L^2([0,1],H^s(M))\). It results that for almost all \(t \in [0,1]\), \(p^f_t = -\partial _{\check{f}}g(q_1,\check{f_1})\) or in other words \(p^f \in H^1([0,1],H^s(M)^*)\) and:

$$\begin{aligned} \dot{p}_t^f = 0 = -\partial _{\check{f}} H(q_t,\check{f}_t,p_t,p_t^{f},v_t,\check{h}_t) \end{aligned}$$

Finally, the variations with respect to v and \(\check{h}\) give:

$$\begin{aligned}&\int _0^1 \left( \xi _{q_t}^* p_t - (\partial _{v} L(q_t,v_t,\check{h}_t)|\delta v_t) \right) \mathrm{d}t =0 \\&\int _0^1 \left( p^f_t - \partial _{\check{h}} L(q_t,v_t,\check{h}_t)|\delta \check{h}_t \right) \mathrm{d}t =0 \end{aligned}$$

for all \(\delta v \in L^2([0,1],V), \delta \check{h} \in L^2([0,1],H^s(M))\). Therefore

$$\begin{aligned}&\xi _{q_t}^* p_t - (\partial _{v} L(q_t,v_t,\check{h}_t) = \partial _{v} H(q_t,\check{f}_t,p_t,p_t^{f},v_t,\check{h}_t) = 0\\&p^f_t - \partial _{\check{h}} L(q_t,v_t,\check{h}_t) = \partial _{\check{h}} H(q_t,\check{f}_t,p_t,p_t^{f},v_t,\check{h}_t) = 0 \end{aligned}$$

and the proof of Theorem 6 is complete.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charon, N., Charlier, B. & Trouvé, A. Metamorphoses of Functional Shapes in Sobolev Spaces. Found Comput Math 18, 1535–1596 (2018). https://doi.org/10.1007/s10208-018-9374-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10208-018-9374-3

Keywords

Mathematics Subject Classification

Navigation