[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

Intersection cuts for nonlinear integer programming: convexification techniques for structured sets

  • Full Length Paper
  • Series A
  • Published:
Mathematical Programming Submit manuscript

Abstract

We study the generalization of split, k-branch split, and intersection cuts from mixed integer linear programming to the realm of mixed integer nonlinear programming. Constructing such cuts requires calculating the convex hull of the difference between a convex set and an open set with a simple geometric structure. We introduce two techniques to give precise characterizations of such convex hulls and use them to construct split, k-branch split, and intersection cuts for several classes of non-polyhedral sets. In particular, we give simple formulas for split cuts for essentially all convex sets described by a single conic quadratic inequality. We also give simple formulas for k-branch split cuts and some general intersection cuts for a wide variety of convex quadratic sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. We allow \(\pi =0_n\) to consider disjunctions that only affect \(t\).

  2. For instance, (13) implies \(\sqrt{\left( ax+b\right) ^2} \le \left( c-d\right) x+e\) for all \(\left( x,-x\right) \in Q_0\).

  3. After our original submission, it was brought to our attention that reduction of the infinite number of inequalities to a single quadratic inequality can also be directly deduced from the formulas for such linear inequalities given in [12, 13].

References

  1. Achterberg, T.: SCIP: solving constraint integer programs. Math. Program. Comput. 1, 1–41 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Andersen, K., Cornuéjols, G., Li, Y.: Split closure and intersection cuts. Math. Program. 102, 457–493 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Andersen, K., Jensen, A.: Intersection cuts for mixed integer conic quadratic sets. In: Goemans, M., Correa, J. (eds.) 16th International IPCO Conference, Valparaiso, Lecture Notes in Computer Science, pp. 37–48. Springer (2013)

  4. Andersen, K., Louveaux, Q., Weismantel, R.: An analysis of mixed integer linear sets based on lattice point free convex sets. Math. Oper. Res. 35, 233–256 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  5. Anjos, M.F., Lasserre, J.B. (eds.): Handbook on Semidefinite, Conic and Polynomial Optimization, International Series in Operations Research & Management Science, vol. 166. Springer, Berlin (2012)

  6. Atamtürk, A., Narayanan, V.: Cuts for conic mixed-integer programming. In: Fischetti, M., Williamson, D.P. (eds.) IPCO, LNCS, vol. 4513, pp. 16–29. Springer (2007)

  7. Atamtürk, A., Narayanan, V.: Conic mixed-integer rounding cuts. Math. Program. 122, 1–20 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Balas, E.: Intersection cuts-a new type of cutting planes for integer programming. Oper. Res. 19, 19–39 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  9. Balas, E., Margot, F.: Generalized intersection cuts and a new cut generating paradigm. Math. Program. 137, 19–35 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Belotti, P., Góez, J.C., Pólik, I., Ralphs, T.K., Terlaky, T.: A conic representation of the convex hull of disjunctive sets and conic cuts for integer second order cone optimization. Optimization Online (2012). http://www.optimization-online.org/DB_HTML/2012/06/3494.html

  11. Belotti, P., Góez, J.C., Pólik, I., Ralphs, T.K., Terlaky, T.: On families of quadratic surfaces having fixed intersections with two hyperplanes. Discrete Appl. Math. 161(16), 2778–2793 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bienstock, D., Michalka, A.: Strong formulations for convex functions over nonconvex sets. Optimization Online (2011). http://www.optimization-online.org/DB_HTML/2011/12/3278.html

  13. Bienstock, D., Michalka, A.: Cutting-planes for optimization of convex functions over nonconvex sets. SIAM J. Optim. 24(2), 643–677 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  14. Billionnet, A., Elloumi, S., Lambert, A.: Extending the QCR method to general mixed-integer programs. Math. Program. 131, 381–401 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Billionnet, A., Elloumi, S., Plateau, M.: Improving the performance of standard solvers for quadratic 0–1 programs by a tight convex reformulation: the QCR method. Discrete Appl. Math. 157, 1185–1197 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Bixby, R., Fenelon, M., Gu, Z., Rothberg, E., Wunderling, R.: Mixed-integer programming: a progress report. In: The Sharpest Cut: The Impact of Manfred Padberg and his Work, chap. 18, pp. 309–326. SIAM, Philadelphia (2004)

  17. Bixby, R., Rothberg, E.: Progress in computational mixed integer programming—a look back from the other side of the tipping point. Ann. Oper. Res. 149, 37–41 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  18. Blekherman, G., Parrilo, P., Thomas, R.: Semidefinite Optimization and Convex Algebraic Geometry. MPS-SIAM Series on Optimization. Society for Industrial and Applied Mathematics (2013)

  19. Bonami, P.: Lift-and-project cuts for mixed integer convex programs. In: Gunluk, O., Woeginger, G.J. (eds.): Proceedings of the 15th IPCO Conference, New York, NY, 2011, LNCS, vol. 6655. Springer, pp. 52–64 (2011)

  20. Buchheim, C., Caprara, A., Lodi, A.: An effective branch-and-bound algorithm for convex quadratic integer programming. In: Eisenbrand, F., Shepherd, F.B. (eds.): Proceedings of the 14th IPCO Conference, Lausanne, Switzerland, 2010, LNCS, vol. 6080. Springer, pp. 285–298 (2010)

  21. Buchheim, C., Caprara, A., Lodi, A.: An effective branch-and-bound algorithm for convex quadratic integer programming. Math. Program. 135, 369–395 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  22. Çezik, M.T., Iyengar, G.: Cuts for mixed 0–1 conic programming. Math. Program. 104, 179–202 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Chvátal, V.: Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Math. 4, 305–337 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  24. Conforti, M., Cornuéjols, G., Zambelli, G.: Polyhedral approaches to mixed integer linear programming. In: 50 Years of Integer Programming 1958–2008, pp. 343–385 (2010)

  25. Conforti, M., Cornuéjols, G., Zambelli, G.: Corner polyhedron and intersection cuts. Surv. Oper. Res. Manag. Sci. 16, 105–120 (2011)

    Google Scholar 

  26. Cook, W.J., Kannan, R., Schrijver, A.: Chvátal closures for mixed integer programming problems. Math. Program. 47, 155–174 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  27. Cornuéjols, G.: Valid inequalities for mixed integer linear programs. Math. Program. 112, 3–44 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  28. Dadush, D., Dey, S.S., Vielma, J.P.: The Chvátal-Gomory closure of a strictly convex body. Math. Oper. Res. 36, 227–239 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  29. Dadush, D., Dey, S.S., Vielma, J.P.: On the Chvátal-Gomory closure of a compact convex set. In: Gunluk, O., Woeginger, G.J. (eds.): Proceedings of the 15th IPCO Conference, New York, NY, 2011, LNCS, vol. 6655. Springer, pp. 130–142 (2011)

  30. Dadush, D., Dey, S.S., Vielma, J.P.: The split closure of a strictly convex body. Oper. Res. Lett. 39, 121–126 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  31. Dash, S., Dey, S.S., Günlük, O.: Two dimensional lattice-free cuts and asymmetric disjunctions for mixed-integer polyhedra. Math. Program. 135, 221–254 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  32. Dash, S., Günlük, O., Raack, C.: A note on the MIR closure and basic relaxations of polyhedra. Oper. Res. Lett. 39, 198–199 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  33. Dash, S., Günlük, O., Vielma, J.P.: Computational experiments with cross and crooked cross cuts. INFORMS J. Comput. 26, 780–797 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  34. Del Pia, A., Weismantel, R.: Relaxations of mixed integer sets from lattice-free polyhedra. 4OR Q. J. Oper. Res. 10, 1–24 (2012)

    Article  Google Scholar 

  35. Dey, S.S., Vielma, J.P.: The Chvátal-Gomory closure of an ellipsoid is a polyhedron. In: Eisenbrand, F., Shepherd, F.B. (eds.): Proceedings of the 14th IPCOConference, Lausanne, Switzerland, 2010, LNCS, vol. 6080. Springer, pp. 327–340 (2010)

  36. Drewes, S.: Mixed integer second order cone programming. Ph.D. thesis, Technische Universität Darmstadt (2009)

  37. Eisenbrand, F., Shepherd, F.B. (eds.): Proceedings of the 14th IPCO Conference, Lausanne, Switzerland, 2010, LNCS, vol. 6080. Springer (2010)

  38. Fujie, T., Kojima, M.: Semidefinite programming relaxation for nonconvex quadratic programs. J. Glob. Optim. 10, 367–380 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  39. Giandomenico, M., Letchford, A.N., Rossi, F., Smriglio, S.: A new approach to the stable set problem based on ellipsoids. In: Gunluk, O., Woeginger, G.J. (eds.): Proceedings of the 15th IPCO Conference, New York, NY, 2011, LNCS, vol. 6655. Springer, pp. 223–234 (2011)

  40. Gomory, R.E.: Outline of an algorithm for integer solutions to linear programs. Bull. Am. Math. Soc. 64, 275–278 (1958)

    Article  MATH  MathSciNet  Google Scholar 

  41. Gomory, R.E.: Some polyhedra related to combinatorial problems. Linear Algebra Appl. 2, 451–558 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  42. Gomory, R.E., Johnson, E.L.: Some continuous functions related to corner polyhedra. Math. Program. 3, 23–85 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  43. Gouveia, J., Thomas, R.: Convex hulls of algebraic sets. In: Anjos, M.F., Lasserre, J.B. (eds.): Handbook on Semidefinite, Conic and Polynomial Optimization, International Series in Operations Research & Management Science, vol. 166. Springer, Berlin, pp. 113–138 (2012)

  44. Günlük, O., Woeginger, G.J. (eds.): Proceedings of the 15th IPCO Conference, New York, NY, 2011, LNCS, vol. 6655. Springer (2011)

  45. Helton, J.W., Nie, J.: Semidefinite representation of convex sets and convex hulls. In: Anjos, M.F., Lasserre, J.B. (eds.): Handbook on Semidefinite, Conic and Polynomial Optimization, International Series in Operations Research & Management Science, vol. 166. Springer, Berlin, pp. 77–112 (2012)

  46. Henrion, D.: Semidefinite representation of convex hulls of rational varieties. Acta applicandae mathematicae 115, 319–327 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  47. Horst, R., Tuy, H.: Global Optimization: Deterministic Approaches. Springer, Berlin (2003)

    Google Scholar 

  48. Johnson, E.L., Nemhauser, G.L., Savelsbergh, M.W.P.: Progress in linear programming-based algorithms for integer programming: an exposition. INFORMS J. Comput. 12, 2–23 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  49. Kılınç, M.R., Modaresi, S., Vielma, J.P.: Split cuts for conic programming. 9th Mixed Integer Programming Workshop (MIP 2012), July 16–19, 2012, Davis, CA, Poster (2012). https://www.math.ucdavis.edu/static/conferences/mip_2012/posters/poster-sina-modaresi

  50. Kılınç, M.R., Linderoth, J., Luedtke, J.: Effective separation of disjunctive cuts for convex mixed integer nonlinear programs. Tech. rep., University of Wisconsin-Madison (2010)

  51. Kojima, M., Tunçel, L.: Cones of matrices and successive convex relaxations of nonconvex sets. SIAM J. Optim. 10, 750–778 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  52. Lasserre, J.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11, 796–817 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  53. Li, Y., Richard, J.P.P.: Cook, Kannan and Schrijvers example revisited. Discrete Optim. 5, 724–734 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  54. Lodi, A.: Mixed Integer Programming Computation. Springer, New York (2010). chap. 16, pp. 619–645

    Book  Google Scholar 

  55. Lovász, L.: Geometry of numbers and integer programming. In: Iri, M., Tanabe, K. (eds.) Mathematical Programming: Recent Developments and Applications, pp. 177–210. Kluwer, Dordrecht (1989)

    Google Scholar 

  56. Marchand, H., Wolsey, L.: Aggregation and mixed integer rounding to solve MIPs. Oper. Res. 49, 363–371 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  57. Micciancio, D., Goldwasser, S.: Complexity of Lattice Problems: A Cryptographic Perspective, The Kluwer International Series in Engineering and Computer Science, vol. 671. Kluwer (2002)

  58. Modaresi, S., Kılınç, M.R., Vielma, J.P.: Split cuts and extended formulations for mixed integer conic quadratic programming. Oper. Res. Lett. 43,10–15 (2015)

  59. Moran, R., Dey, D.A., Vielma, S.S.: A strong dual for conic mixed-integer programs. SIAM J. Optim. 22(3), 1136–1150 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  60. Nemhauser, G.L., Wolsey, L.A.: Integer and Combinatorial Optimization. Wiley, New York (1988)

    Book  MATH  Google Scholar 

  61. Nemhauser, G.L., Wolsey, L.A.: A recursive procedure to generate all cuts for 0–1 mixed integer programs. Math. Program. 46, 379–390 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  62. Nesterov, Y., Wolkowicz, H., Ye, Y.: Nonconvex quadratic optimization. In: Saigal, R., Vandenberghe, L., Wolkowicz, H. (eds.) Handbook of Semidefinite Programming, pp. 361–420. Kluwer Academic Publishers, Dordrecht (2000)

    Chapter  Google Scholar 

  63. Oustry, C.: SDP relaxations in combinatorial optimization from a Lagrangian viewpoint. In: Advances in Convex Analysis and Global Optimization: Honoring the Memory of C. Caratheodory (1873–1950), vol. 54, pp. 119–134 (2001)

  64. Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems. Math. Program. 96(2), 293–320 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  65. Pólik, I., Terlaky, T.: A survey of the S-lemma. SIAM Rev. 49, 371–418 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  66. Poljak, S., Rendl, F., Wolkowicz, H.: A recipe for semidefinite relaxation for (0, 1)-quadratic programming. J. Glob. Optim. 7, 51–73 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  67. Ranestad, K., Sturmfels, B.: The convex hull of a variety. In: Notions of Positivity and the Geometry of Polynomials, pp. 331–344 (2011)

  68. Ranestad, K., Sturmfels, B.: On the convex hull of a space curve. Adv. Geom. 12, 157–178 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  69. Sanyal, R., Sottile, F., Sturmfels, B.: Orbitopes. Mathematika 57, 275–314 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  70. Scheiderer, C.: Convex hulls of curves of genus one. Adv. Math. 228, 2606–2622 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  71. Sherali, H., Adams, W.: A Reformulation-linearization Technique for Solving Discrete and Continuous Nonconvex Problems, vol. 31. Springer, Berlin (1998)

    Google Scholar 

  72. Stubbs, R.A., Mehrotra, S.: A branch-and-cut method for 0–1 mixed convex programming. Math. Program. 86, 515–532 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  73. Tawarmalani, M., Sahinidis, N.: Convexification and Global Optimization in Continuous and Mixed-integer Nonlinear Programming: Theory, Algorithms, Software, and Applications, vol. 65. Springer, Berlin (2002)

    Google Scholar 

  74. Vielma, J.P.: A constructive characterization of the split closure of a mixed integer linear program. Oper. Res. Lett. 35, 29–35 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  75. Wolsey, L.A.: Integer Programming. Wiley, New York (1998)

    MATH  Google Scholar 

  76. Yıldıran, U.: Convex hull of two quadratic constraints is an LMI set. IMA J. Math. Control Inf. 26, 417–450 (2009)

    Article  MATH  Google Scholar 

  77. Yıldıran, U., Kose, I.E.: LMI representations of the convex hulls of quadratic basic semialgebraic sets. J. Convex Anal. 17, 535–551 (2010)

    MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank the review team including an anonymous associate editor and two referees for their thoughtful and constructive comments, which significantly improved the exposition of the paper. This research was partially supported by the National Science Foundation under Grant CMMI-1030662 and by the Office of Naval Research under Grant N000141110724.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Pablo Vielma.

Appendix

Appendix

Here we provide the omitted proofs.

Proof of Lemma 1

We show the equivalent version of the lemma given by

  1. (i)

    If \(s \in \left\{ \pi _0, \pi _1\right\} \), then \(\left| as +b\right| =(\left| s\right| ^p + \left| l\right| ^p)^{1/p}\) and

  2. (ii)

    if \(s \notin \left( \pi _0, \pi _1\right) \), then \(\left| as +b\right| \le (\left| s\right| ^p + \left| l\right| ^p)^{1/p}\).

Let \(f(s):{=}a s +b\) and \(g(s):{=}(\left| s\right| ^p + \left| l\right| ^p)^{1/p}\). By definition of \(a\) and \(b\) we have that \(f( \pi _i)=g(\pi _i)\) for \(i\in \left\{ 0,1\right\} \). Indeed, \(f(s)\) is the (affine) linear interpolation of \(g(s)\) through \(z=\pi _0\) and \(z = \pi _1\). Convexity of \(g(s)\) then implies \(f(s)\le g(s)\) for all \(s\notin \left( \pi _0, \pi _1\right) \). If \(\left| \pi _0\right| =\left| \pi _1\right| \), then \(\left| as +b\right| =f(s)\) and the result follows directly. If \(\left| \pi _0\right| \ne \left| \pi _1\right| \), one can check that \(\left| as +b\right| =f(s)\) for \(s\in \left[ \pi _0, \pi _1\right] \) and hence (i) holds. For (ii) it suffices to show that \(-as-b\le g(s)\) for all \(s\in {\mathbb {R}}\). To show this we first assume \(a>0\) and hence \(\pi _1>0\) (case \(a<0\) is analogous). Because \(f(s)\) is affine and \(f( \pi _i)=g(\pi _i)\) for \(i\in \left\{ 0,1\right\} \), by a sub-differential version of the mean value theorem we have that there exists \(\bar{s}\in (\pi _0,\pi _1)\) such that \(a \in \partial g(\bar{s})\). Then, by symmetry of \(g(s)\) and its convexity, we have that \(g(s)\ge g(-\bar{s})-a(s+\bar{s}) = - as + g(-\bar{s})-a\bar{s}\) for \(s \in {\mathbb {R}}\). The result then follows by noting that \( g(-\bar{s})-a\bar{s}\ge -b\) for all \(\bar{s}\in (\pi _0,\pi _1)\) because \(g(s)-as \ge 0\) for all \(s \in {\mathbb {R}}\) and \(-b\le 0\). \(\square \)

Proof of Lemma 3

We first prove the second case \(\pi \notin L^\perp \). The left to right containment follows from \(B \setminus {{\mathrm{int}}}\left( F\right) \subseteq B\) and convexity of \(B\). To show the right to left containment, let \(\overline{x}\in B\) such that \(\pi ^T \overline{x}\in \left( \pi _0,\pi _1\right) \) and \(u \in L\). Note that \(\pi \notin L^\perp \) implies \(\pi ^T u \ne 0\). Let \(x^i :{=}\overline{x}+ \lambda _i u\) for \(i \in \left\{ 0,1\right\} \), where \(\lambda _i = \frac{\pi _i - \pi ^T \overline{x}}{\pi ^T u}\), and let \(\beta \in (0,1)\) be such that \(\pi ^T \overline{x}= \beta \pi _0 + \left( 1-\beta \right) \pi _1\). Because \(u \in L\) and since \(\pi ^T x^i = \pi _i\), we have \(x^i \in B \setminus {{\mathrm{int}}}\left( F\right) \) for \(i \in \left\{ 0,1\right\} \). The results then follows by noting that \(\overline{x}= \beta x^0 + \left( 1-\beta \right) x^1\).

We prove the first case by showing that

$$\begin{aligned} {{\mathrm{conv}}}\left( B \setminus {{\mathrm{int}}}\left( F\right) \right)&= {{\mathrm{conv}}}\left( \left( B_0 + L\right) \setminus {{\mathrm{int}}}\left( F\right) \right) \end{aligned}$$
(34)
$$\begin{aligned}&= {{\mathrm{conv}}}\left( B_0 \setminus {{\mathrm{int}}}\left( F\right) \right) + L \end{aligned}$$
(35)
$$\begin{aligned}&= \left( B_0 \cap C\right) + L \end{aligned}$$
(36)

Note that (34) and (36) follow from the assumptions. To show the left to right containment in (35), let \(\overline{x}\in {{\mathrm{conv}}}\left( \left( B_0 + L\right) \setminus {{\mathrm{int}}}\left( F\right) \right) \). There exist \(y^i \in B_0\), \(u^i \in L\) for \(i \in \left\{ 0,1\right\} \), and \(\beta \in [0,1]\) such that for \(x^i :{=}y^i + u^i\), we have \(x^i \notin {{\mathrm{int}}}\left( F\right) \) and \(\overline{x}= \beta x^0 + \left( 1-\beta \right) x^1\). Note that \(\pi \in L^\perp \) and \(x^i \notin {{\mathrm{int}}}\left( F\right) \) imply \(y^i \notin {{\mathrm{int}}}\left( F\right) \) for \(i \in \left\{ 0,1\right\} \). The result then follows from noting that \(\beta y^0 + \left( 1-\beta \right) y^1 \in {{\mathrm{conv}}}\left( B_0 \setminus {{\mathrm{int}}}\left( F\right) \right) \) and \(\beta u^0 + \left( 1-\beta \right) u^1 \in L\).

To show the right to left containment in (35), let \(\overline{x}\in {{\mathrm{conv}}}\left( B_0 \setminus {{\mathrm{int}}}\left( F\right) \right) + L\). There exist \(u \in L\), \(y^i \in B_0 \setminus {{\mathrm{int}}}\left( F\right) \) for \(i \in \left\{ 0,1\right\} \), and \(\beta \in [0,1]\) such that \(\overline{x}= \beta y^0 + \left( 1-\beta \right) y^1 + u\). If \(\beta \in \left\{ 0,1\right\} \), the result follows by noting that \(\pi \in L^\perp \) and \(y^0,y^1 \notin {{\mathrm{int}}}\left( F\right) \) imply \(\overline{x}\notin {{\mathrm{int}}}\left( F\right) \). Assume \(\beta \in \left( 0,1\right) \) and let \(x^0 :{=}y^0 + \frac{u}{2\beta }\) and \(x^1 :{=}y^1 + \frac{u}{2\left( 1-\beta \right) }\). The result then follows by noting that \(x^i \in B_0+L \setminus {{\mathrm{int}}}\left( F\right) \) for \(i \in \left\{ 0,1\right\} \) and \(\overline{x}= \beta x^0 + \left( 1-\beta \right) x^1\). \(\square \)

Proof of Proposition 9

We first prove the last case using Proposition 1. Using Lemma 2, we have

$$\begin{aligned} C&= \left\{ (x,t) \in {\mathbb {R}}^{n+1}\,:\, \left\| P_\pi ^\perp x\right\| _2^2 \le (c \pi ^T x + d t + e)^2\right. \nonumber \\&\left. \quad - \frac{(\pi ^T x + b)^2}{\left\| \pi \right\| _2^2}, \quad c \pi ^T x + d t + e \ge 0\right\} . \end{aligned}$$
(37)

Now consider the following two cases.

Case 1 Assume that \(\left\| \pi \right\| _2 \ne 0\). To prove the right to left containment in (2a), let \((\overline{x}, \overline{t}) \in C \cap {{\mathrm{bd}}}\left( F\right) \). We need to show that

$$\begin{aligned} (c \pi ^T \overline{x}+ d\overline{t}+ e)^2 - \frac{(\pi ^T \overline{x}+ b)^2}{\left\| \pi \right\| _2^2} = \overline{t}- \frac{(\pi ^T \overline{x})^2}{\left\| \pi \right\| _2^2}. \end{aligned}$$
(38)

Replacing \(\overline{t}\) with \((\pi _i - \pi ^T \overline{x})/\hat{\pi }\) for \(i \in \left\{ 0,1\right\} \), one can check that (38) follows from the definition of \(b, c, d,\) and e. To prove the left to right containment in (2a), let \((\overline{x}, \overline{t}) \in Q_0 \cap {{\mathrm{bd}}}\left( F\right) \). We only need to show that \(c \pi ^T \overline{x}+ d\overline{t}+ e \ge 0\). Since \(d = c \hat{\pi }\), we can equivalently show that \(c (\pi ^T \overline{x}+ \hat{\pi }\overline{t}) \ge -e\), which after a few simplifications, can be written as

$$\begin{aligned} \hat{\pi }(\pi ^T \overline{x}+ \hat{\pi }\overline{t}) \ge - \left( \left\| \pi \right\| _2^2 + \sqrt{\left\| \pi \right\| _2^2+ 4 \pi _0 \hat{\pi }} \sqrt{\left\| \pi \right\| _2^2+ 4 \pi _1 \hat{\pi }}\right) \Big /{4}. \end{aligned}$$
(39)

(39) follows from noting that \(\min \{\hat{\pi }(\pi ^Tx + \hat{\pi }t) \,:\, (x, t) \in Q_0\} = -\frac{\left\| \pi \right\| _2^2}{4}\).

To show (2b), let \(\left( \overline{x},\overline{t}\right) \in Q_0 \setminus {{\mathrm{int}}}\left( F\right) \). Proving \(c \pi ^T \overline{x}+ d\overline{t}+ e \ge 0\) is similar as before. We only need to show that \((\overline{x}, \overline{t})\) satisfies the quadratic inequality in (37), which we prove by showing that

$$\begin{aligned} \left( (c \pi ^T \overline{x}+ d\overline{t}+ e)^2 - \frac{(\pi ^T \overline{x}+ b)^2}{\left\| \pi \right\| _2^2}\right) - \left( \overline{t}- \frac{(\pi ^T \overline{x})^2}{\left\| \pi \right\| _2^2}\right) \ge 0. \end{aligned}$$
(40)

One can check that proving (40) is equivalent to showing that

$$\begin{aligned} \frac{f^2 (\pi ^T \overline{x}+ \hat{\pi }\overline{t}- \pi _0) (\pi ^T \overline{x}+ \hat{\pi }\overline{t}- \pi _1)}{2 \left( \pi _1 - \pi _0\right) ^2 \hat{\pi }^2} \ge 0, \end{aligned}$$

which follows from \(\pi ^T \overline{x}+ \hat{\pi }\overline{t}\notin (\pi _0, \pi _1)\). Note that \(C\) is a conic set with apex \(\left( x^*,t^*\right) = (\frac{-b}{\left\| \pi \right\| _2^2} \pi ,\frac{bc-e}{d})\). Furthermore,

$$\begin{aligned} \left( \pi ,\hat{\pi }\right) ^T \left( x^*,t^*\right) = -e/c = \frac{-\left\| \pi \right\| _2^2}{4\hat{\pi }} - \frac{\sqrt{\left\| \pi \right\| _2^2 + 4 \pi _0 \hat{\pi }} \sqrt{\left\| \pi \right\| _2^2 + 4 \pi _1 \hat{\pi }}}{4\hat{\pi }}. \end{aligned}$$

Hence, if \(\hat{\pi }< 0\), then \(\left( \pi ,\hat{\pi }\right) ^T \left( x^*,t^*\right) \ge \frac{-\left\| \pi \right\| _2^2}{4\hat{\pi }} \ge \pi _1\) and if \(\hat{\pi }> 0\), then \(\left( \pi ,\hat{\pi }\right) ^T \left( x^*,t^*\right) \le \frac{-\left\| \pi \right\| _2^2}{4\hat{\pi }} \le \pi _0\). Friends condition (3) then follows from Proposition 4.

Case 2 If \(\left\| \pi \right\| _2 = 0\), \(C\) is simplified to \(C = \left\{ (\right\} x,t) \in {\mathbb {R}}^{n+1}\,:\, \left\| x\right\| _2^2 \le \left( dt+e\right) ^2, \) \( dt+e \ge 0 \).

Interpolation condition (2a) follows from noting that \(\left( d \overline{t}+ b\right) ^2 = \overline{t}\). Non-negativity of \(d, e\), and \(t\) also imply \(d \overline{t}+ e \ge 0\). Proving (2b) is equivalent to showing that

$$\begin{aligned} \frac{f^2 \left( \hat{\pi }\overline{t}- \pi _0\right) \left( \hat{\pi }\overline{t}- \pi _1\right) }{2 \left( \pi _1 - \pi _0\right) ^2 \hat{\pi }^2} \ge 0, \end{aligned}$$

which follows from \(\hat{\pi }\overline{t}\notin (\pi _0, \pi _1)\). Note that \(C\) is a conic set with apex \(\left( x^*,t^*\right) = \left( 0,\frac{-e}{d}\right) \). Furthermore, \(\left( \pi ,\hat{\pi }\right) ^T \left( x^*,t^*\right) = -e/c\). As shown in Case 1, we have \(\left( \pi ,\hat{\pi }\right) ^T \left( x^*,t^*\right) \notin \left( \pi _0,\pi _1\right) \). Friends condition (3) then follows from Proposition 4.

To prove the other cases, let \(S_0 :{=}\{(x,t) \in Q_0\,:\, \pi ^Tx+\hat{\pi }t \le \pi _0\}\) and \(S_1 :{=}\) \( \{(x,t) \in Q_0\,:\, \pi ^Tx+\hat{\pi }t \ge \pi _1\}\). Consider the first case where \(\hat{\pi }> 0\) and \(\pi _1 \le \frac{-\left\| \pi \right\| _2^2}{4\hat{\pi }}\). We prove the result by showing that \(S_0 = \emptyset \) and \(S_1 = Q_0\). If \(\left\| \pi \right\| _2 = 0\), the result follows from non-negativity of \(t\). Now assume that \(\left\| \pi \right\| _2 \ne 0\). We prove \(S_0 = \emptyset \) by showing that \((\pi ^T x)^2/\left\| \pi \right\| _2^2 > (\pi _0 - \pi ^T x)/\hat{\pi }\) for \(x\in {\mathbb {R}}^n\). This follows from noting that for \(y \in {\mathbb {R}}\), the quadratic equation \(\frac{y^2}{\left\| \pi \right\| _2^2} = \frac{\pi _0 - y}{\hat{\pi }}\) does not have any solution. To prove \(S_1 = Q_0\), we show that \(\pi ^T x + \hat{\pi }t \ge \pi _1\) is a valid inequality for \(Q_0\). This comes from the fact that the quadratic equation \(\frac{y^2}{\left\| \pi \right\| _2^2} = \frac{\pi _1 - y}{\hat{\pi }}\) has at most a single solution and we thus have \((\pi _1 - \pi ^T x)/\hat{\pi } \le (\pi ^T x)^2/\left\| \pi \right\| _2^2 \le t\) for \(x \in {\mathbb {R}}^n\). The proof for the case \(\hat{\pi }< 0\) and \(\frac{-\left\| \pi \right\| _2^2}{4\hat{\pi }} \le \pi _0\) is analogous and follows by noting that \(S_0 = Q_0\) and \(S_1 = \emptyset \).

We prove the second case where \(\hat{\pi }> 0\) and \(\pi _0 < \frac{-\left\| \pi \right\| _2^2}{4\hat{\pi }} < \pi _1\) by showing that \(S_0 = \emptyset , S_1 \subsetneq Q_0\), and \(S_1 \ne \emptyset \). Proving \(S_0 = \emptyset \) is analogous to the previous case. We have \(S_1 \subsetneq Q_0\) since \(\left( \bar{x}, \overline{t}\right) = (\frac{- \pi }{2 \hat{\pi }}, \frac{\left\| \pi \right\| _2^2}{4 \hat{\pi }^2}) \in Q_0\), but \(\left( \bar{x}, \overline{t}\right) \notin S_1\). To prove \(S_1 \ne \emptyset \), one can check that for any \(\bar{x} \in {\mathbb {R}}^n\) and \(\overline{t}= {{\mathrm{max}}}\{\left\| \overline{x}\right\| _2^2, \frac{\pi _1 - \pi ^T \bar{x}}{\hat{\pi }}\}\), \(\left( \bar{x}, \overline{t}\right) \in S_1\). The proof of the third case is analogous and follows by noting that \(S_1 = \emptyset , S_0 \subsetneq Q_0\), and \(S_0 \ne \emptyset \). \(\square \)

Proof of Proposition 10

We first prove the last case using Proposition 1. Note that \(\hat{\pi }\ne 0\) and \(\hat{\pi }\in (-\left\| \pi \right\| _2, \left\| \pi \right\| _2)\) imply \(\left\| \pi \right\| _2 \ne 0\). Using Lemma 2, we have

$$\begin{aligned} C&= \left\{ (x,t) \in {\mathbb {R}}^{n+1}\,:\, \left\| P_\pi ^\perp x\right\| _2^2 \le (c \pi ^T x + d t + e)^2 - \frac{(a\pi ^T x + b)^2}{\left\| \pi \right\| _2^2},\right. \nonumber \\&\left. \quad c \pi ^T x + d t + e \ge 0\right\} . \end{aligned}$$
(41)

Observe that \(d>0\). Similarly to the proof of Proposition 9, one can show that interpolation condition (2) holds by the definition of \(a, b, c, d\), and \(e\). If \(\left| \pi _0 \right| = \left| \pi _1 \right| \), then \(u = (\pi ,\frac{-c \left\| \pi \right\| _2^2}{d}) \in {{\mathrm{lin}}}\left( C\right) \) and friends condition (3) follows from Proposition 2. If \(\left| \pi _0 \right| \ne \left| \pi _1 \right| \), then \(C\) is a conic set with apex \(\left( x^*,t^*\right) = (\frac{-b}{a \left\| \pi \right\| _2^2} \pi ,\frac{bc-ae}{ad})\). Furthermore, \(\left( \pi ,\hat{\pi }\right) ^T \left( x^*,t^*\right) = \frac{2 \pi _0\pi _1}{\pi _0 + \pi _1}\). If \(\pi _0 + \pi _1 <0\), then we have \(\frac{2 \pi _0\pi _1}{\pi _0 + \pi _1} \ge \pi _1\), and if \(\pi _0 + \pi _1 >0\), then we have \(\frac{2 \pi _0\pi _1}{\pi _0 + \pi _1} \le \pi _0\). Friends condition (3) then follows from Proposition 4.

To prove the first case \(0 \notin \left( \pi _0, \pi _1\right) \), we only need to show that friends condition (3) holds. This follows from Proposition 4 by noting that \(K_0\) is a conic set whose apex is the origin.

To prove the other cases, let \(S_0 :{=}\{(x,t) \in K_0\,:\, \pi ^Tx+\hat{\pi }t \le \pi _0\}\) and \(S_1 :{=} \{(x,t) \in K_0\,:\, \pi ^Tx+\hat{\pi }t \ge \pi _1\}\). Consider the second case \(0 \in \left( \pi _0,\pi _1\right) \) and \(\hat{\pi } \le -\left\| \pi \right\| _2\). We prove the result by showing that \(S_1 = \emptyset \), \(S_0 \subsetneq K_0\), and \(S_0 \ne \emptyset \). If \(\left\| \pi \right\| _2 = 0\), the result follows from non-negativity of \(t\). Now assume that \(\left\| \pi \right\| _2 \ne 0\). We prove \(S_1 = \emptyset \) by showing that \((\pi ^T x)^2/\left\| \pi \right\| _2^2 > (\pi _1 - \pi ^T x)^2/\hat{\pi }^2\). Note that non-negativity of \(t\), \(\hat{\pi }< 0\), and \(\pi ^T x + \hat{\pi } t \ge \pi _1\) imply \(\pi ^T x \ge \pi _1 > 0\). One can see that \(-\pi ^T x < \pi _1 - \pi ^T x < \pi ^T x\), where the first inequality comes from the fact that \(\pi _1 > 0\), and the second inequality follows from \(\pi _1 \le \pi ^T x\) and \(- \pi ^T x < 0\). Thus, \((\pi ^T x)^2 > (\pi _1 - \pi ^T x)^2\) and the result follows by noting that \(\frac{1}{\left\| \pi \right\| _2^2} \ge \frac{1}{\hat{\pi }^2}\). We have \(S_0 \subsetneq K_0\) since \(\left( \bar{x}, \overline{t}\right) = \left( {0_n}, 0\right) \in K_0\), but \(\left( \bar{x}, \overline{t}\right) \notin S_0\). To prove \(S_0 \ne \emptyset \), one can check that for any \(\bar{x} \in {\mathbb {R}}^n\) and \(\overline{t}= {{\mathrm{max}}}\{\left\| \overline{x}\right\| _2, \frac{\pi _0 - \pi ^T \bar{x}}{\hat{\pi }}\}\), \(\left( \bar{x}, \overline{t}\right) \in S_0\). The proof of the third case \(0 \in \left( \pi _0,\pi _1\right) \) and \(\hat{\pi } \ge \left\| \pi \right\| _2\) is analogous and follows by noting that \(S_0 = \emptyset \), \(S_1 \subsetneq K_0\), and \(S_1 \ne \emptyset \). \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Modaresi, S., Kılınç, M.R. & Vielma, J.P. Intersection cuts for nonlinear integer programming: convexification techniques for structured sets. Math. Program. 155, 575–611 (2016). https://doi.org/10.1007/s10107-015-0866-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10107-015-0866-5

Mathematics Subject Classification

Navigation