[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content
Log in

No arbitrage and closure results for trading cones with transaction costs

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

In this paper, we consider trading with proportional transaction costs as in Schachermayer’s paper (Schachermayer in Math. Finance 14:19–48, 2004). We give a necessary and sufficient condition for \({\mathcal{A}}\) , the cone of claims attainable from zero endowment, to be closed. Then we show how to define a revised set of trading prices in such a way that, firstly, the corresponding cone of claims attainable for zero endowment, \({\tilde{ {\mathcal{A}}}}\) , does obey the fundamental theorem of asset pricing and, secondly, if \({\tilde{ {\mathcal{A}}}}\) is arbitrage-free then it is the closure of \({\mathcal{A}}\) . We then conclude by showing how to represent claims.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Delbaen, F., Kabanov, Y.M., Valkeila, E.: Hedging under transaction costs in currency markets: a discrete-time model. Math. Finance 12, 45–61 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  2. Grigoriev, P.: On low dimensional case in the fundamental asset pricing theorem with transaction costs. Stat. Decis. 23, 33–44 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  3. Himmelberg, C.: Measurable relations. Fund. Math. 87, 53–72 (1974)

    MathSciNet  Google Scholar 

  4. Kabanov, Y.M., Rásonyi, M., Stricker, Ch.: No-arbitrage criteria for financial markets with efficient friction. Finance Stoch. 6, 371–382 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Kabanov, Y.M., Rásonyi, M., Stricker, Ch.: On the closedness of sums of convex cones in ℒ0 and the robust no-arbitrage property. Finance Stoch. 7, 403–411 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Jouini, E., Kallal, H.: Arbitrage in securities markets with short-sales constraints. Math. Finance 5, 197–232 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Schachermayer, W.: A Hilbert space proof of the fundamental theorem of asset pricing in finite discrete time. Insur. Math. Econ. 11, 249–257 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Schachermayer, W.: The fundamental theorem of asset pricing under proportional transaction costs in finite discrete time. Math. Finance 14, 19–48 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  9. Stricker, C.: Arbitrage et lois de martingale. Ann. Inst. H. Poincaré Probab. Stat. 26, 451–460 (1990)

    MATH  MathSciNet  Google Scholar 

  10. Valadier, M.: Multiapplications mesurables à valeurs convexes compactes. J. Math. Pures Appl. 50, 265–297 (1971)

    MATH  MathSciNet  Google Scholar 

  11. Yan, J.A.: Caractérisation d’une classe d’ensembles convexes de ℒ1 ou H 1. In: Lecture Notes in Mathematics, vol. 784, pp. 220–222. Springer, Berlin (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saul Jacka.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacka, S., Berkaoui, A. & Warren, J. No arbitrage and closure results for trading cones with transaction costs. Finance Stoch 12, 583–600 (2008). https://doi.org/10.1007/s00780-008-0075-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-008-0075-7

Keywords

Mathematics Subject Classification (2000)

JEL Classification

Navigation