[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Frequency-constrained unit commitment problem with considering dynamic ramp rate limits in the presence of wind power generation

  • Original Article
  • Published:
Neural Computing and Applications Aims and scope Submit manuscript

Abstract

An increased use of variable generation technologies such as wind power generation can have important effects on system frequency performance during normal operation as well as contingencies. This has led to new challenges for system operators in terms of improving frequency characteristics during contingencies. This subject is stated within the framework of frequency-constrained unit commitment problem (FCUCP) in this study by augmenting the frequency characteristic in the multi-thermal units. The ramp rate is proposed as dynamic constraint, and FCUCP is solved efficiently by binary particle swarm optimization (BPSO) based heuristic optimization algorithms. The influence of the proposed ramping on FCUCP is simulated, and it can be shown that the costs of the system under considering practical limitations that are solved by BPSO are minimized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Doherty R, Mullane R, Nolan G, Burke DJ, Bryson A, O’Malley M (2010) An assessment of the impact of wind generation on system frequency control. IEEE Trans Power Syst 25:452–460. https://doi.org/10.1109/TPWRS.2009.2030348

    Article  Google Scholar 

  2. Brouwer AS, van den Broek M, Özdemir Ö, Koutstaal P, Faaij A (2016) Business case uncertainty of power plants in future energy systems with wind power. Energy Policy 29:237–256. https://doi.org/10.1016/j.enpol.2015.11.022

    Article  Google Scholar 

  3. Gautam D, Goel L, Ayyanar R, Vittal V, Harbour T (2011) Control strategy to mitigate the impact of reduced inertia due to doubly fed induction generators on large power systems. IEEE Trans Power Syst 26:214–224. https://doi.org/10.1109/TPWRS.2010.2051690

    Article  Google Scholar 

  4. Abad G, Lopez J, Rodriguez M, Marroyo L, Iwanski G (2011) Doubly fed induction machine: modeling and control for wind energy generation. Wiley, Hoboken. https://doi.org/10.1002/9781118104965

    Book  Google Scholar 

  5. Ahmadi H, Ghasemi H (2011) Probabilistic optimal power flow incorporating wind power using point estimate methods. In Proceedings 10th Internatonal Conference on Environment Electrical Engineering, Rome, Italy, pp 1–5. https://doi.org/10.1109/eeeic.2011.5874815

  6. Ela E, Gevorgian V, Tuohy A, Kirby B, Milligan M, O’Malley M (2014) Market designs for the primary frequency response ancillary service part I: motivation and design. IEEE Trans Power Syst 29:421–431. https://doi.org/10.1109/TPWRS.2013.2264942

    Article  Google Scholar 

  7. Ela E, Gevorgian V, Tuohy A, Kirby B, Milligan M, O’Malley M (2014) Market designs for the primary frequency response ancillary service part II: case studies. IEEE Trans Power Syst 29:432–440. https://doi.org/10.1109/TPWRS.2013.2264951

    Article  Google Scholar 

  8. Yuan X, Nie H, Su A, Wang L, Yuan Y (2009) An improved binary particle swarm optimization for unit commitment problem. Expert Syst Appl 36:8049–8055. https://doi.org/10.1016/j.eswa.2008.10.047

    Article  Google Scholar 

  9. Menhas MI, Wang L, Fei M, Pan H (2012) Comparative performance analysis of various binary coded PSO algorithms in multivariable PID controller design. Expert Syst Appl 39:4390–4401. https://doi.org/10.1016/j.eswa.2011.09.152

    Article  Google Scholar 

  10. Kennedy J, Eberhart RC (1997) A discrete binary version of the particle swarm algorithm. In: Proceedings Conference on Systems, Man and Cybernetics, Piscataway, pp 4104–4108. https://doi.org/10.1109/icsmc.1997.637339

  11. Doherty R, Lalor G, O’Malley M (2005) Frequency control in competitive electricity market dispatch. IEEE Trans Power Syst 20:1588–1596. https://doi.org/10.1109/TPWRS.2005.852146

    Article  Google Scholar 

  12. Lotfalian M, Schlueter R, Idizior D, Rusche P, Tedeschi S, Shu L, Yazdankhah A (1985) Inertial, governor and AGC/economic dispatch load flow simulations of loss of generation contingencies. IEEE Trans Power Appl Syst 104:3020–3028. https://doi.org/10.1109/TPAS.1985.318943

    Article  Google Scholar 

  13. Ceja-Gomez F, Qadri S, Galiana F (2012) Under-frequency load shedding via integer programming. IEEE Trans Power Syst 27:1387–1394. https://doi.org/10.1109/TPWRS.2012.2186156

    Article  Google Scholar 

  14. Restrepo J, Galiana F (2005) Unit commitment with primary frequency regulation constraints. IEEE Trans Power Syst 20:1836–1842. https://doi.org/10.1109/TPWRS.2005.857011

    Article  Google Scholar 

  15. Anderson PM, Mirheydar M (1990) A low-order system frequency response model. IEEE Trans Power Syst 5:720–729. https://doi.org/10.1109/59.65898

    Article  Google Scholar 

  16. Ahmadi H, Ghasemi H (2014) Security-constrained unit commitment with linearized system frequency limits constraints. IEEE Trans Power Syst 29:1536–1545. https://doi.org/10.1109/TPWRS.2014.2297997

    Article  Google Scholar 

  17. Soder L (1993) Reserve margin planning in a wind-hydro-thermal power system. IEEE Trans Power Syst 8:564–571. https://doi.org/10.1109/59.260826

    Article  Google Scholar 

  18. Ortega-Vazquez MA, Kirschen DS (2009) Estimating the spinning reserve requirements in systems with significant wind power generation penetration. IEEE Trans Power Syst 24:114–124. https://doi.org/10.1109/TPWRS.2008.2004745

    Article  Google Scholar 

  19. Morales JM, Conejo AJ, Perez-Ruiz J (2009) Economic valuation of reserves in power systems with high penetration of wind power. IEEE Trans Power Syst 24:900–910. https://doi.org/10.1109/TPWRS.2009.2016598

    Article  Google Scholar 

  20. Lee TY (2007) Optimal spinning reserve for a wind-thermal power system using EIPSO. IEEE Trans Power Syst 22:1612–1621. https://doi.org/10.1109/TPWRS.2007.907519

    Article  Google Scholar 

  21. Wang J, Shahidehpour M, Li Z (2008) Security-constrained unit commitment with volatile wind power generation. IEEE Trans Power Syst 23:1319–1327. https://doi.org/10.1109/TPWRS.2008.926719

    Article  Google Scholar 

  22. Muhammad T, Halim Z (2016) Employing artificial neural networks for constructing metadata-based model to automatically select an appropriate data visualization technique. Appl Soft Comput 49:365–384. https://doi.org/10.1016/j.asoc.2016.08.039

    Article  Google Scholar 

  23. Vagropoulos SI, Kardakos EG, Simoglou CK, Bakirtzis AG, Catalão JP (2016) ANN-based scenario generation methodology for stochastic variables of electric power systems. Electr Power Syst Res 134:9–18. https://doi.org/10.1016/j.epsr.2015.12.020

    Article  Google Scholar 

  24. Halim Z, Muhammad T (2017) Quantifying and optimizing visualization: an evolutionary computing-based approach. Inform Sci 385:284–313. https://doi.org/10.1016/j.ins.2016.12.035

    Article  Google Scholar 

  25. Farrokhabadi M, Canizares C, Bhattacharya K (2016) Unit commitment for isolated microgrids considering frequency control. IEEE Trans Smart Grid. https://doi.org/10.1109/TSG.2016.2629982

    Article  Google Scholar 

  26. Cardozo C, Capely L, Dessante P (2017) Frequency constrained unit commitment. Energy Syst 8:31–56. https://doi.org/10.1007/s12667-015-0166-4

    Article  Google Scholar 

  27. Khazaei P, Dabbaghjamanesh M, Kalantarzadeh A, Mousavi H (2016) Applying the modified TLBO algorithm to solve the unit commitment problem. In: World automation congress, pp 1–6. https://doi.org/10.1109/wac.2016.7583026

  28. Wen Y, Li W, Huang G, Liu X (2016) Frequency dynamics constrained unit commitment with battery energy storage. IEEE Trans Power Syst 31:5115–5125. https://doi.org/10.1109/TPWRS.2016.2521882

    Article  Google Scholar 

  29. Fu Y, Shahidehpour M, Li Z (2005) Security-constrained unit commitment with AC constraints. IEEE Trans Power Syst 20:1538–1550. https://doi.org/10.1109/TPWRS.2005.846076

    Article  Google Scholar 

  30. Tuohy A, Meibom P, Denny E, O’Malley M (2009) Unit commitment for systems with significant wind penetration. IEEE Trans Power Syst 24:592–601. https://doi.org/10.1109/TPWRS.2009.2016470

    Article  Google Scholar 

  31. Ahmadi H, Ghasemi H (2012) Maximum penetration level of wind generation considering power system security limits. IET Gener Transm Distrib 6:1164–1170. https://doi.org/10.1049/iet-gtd.2012.0015

    Article  Google Scholar 

  32. Kundur P, Balu NJ, Lauby MG (1994) Power system stability and control. McGraw-Hill, NewYork

    Google Scholar 

  33. Aik DLH (2006) A general-order system frequency response model incorporating load shedding: analytic modeling and applications. IEEE Trans Power Syst 21:709–717. https://doi.org/10.1109/TPWRS.2006.873123

    Article  Google Scholar 

  34. Carrion M, Arroyo JM (2006) A computationally efficient mixed-integer linear formulation for the thermal unit commitment problem. IEEE Trans Power Syst 21:1371–1378. https://doi.org/10.1109/TPWRS.2006.876672

    Article  Google Scholar 

  35. Li T, Shahidehpour M (2007) Dynamic ramping in unit commitment. IEEE Trans Power Syst 22:1379–1381. https://doi.org/10.1109/TPWRS.2007.901453

    Article  Google Scholar 

  36. Datta D (2013) Unit commitment problem with ramp rate constraint using a binary-real-coded genetic algorithm. Appl Soft Comput 13:3873–3883. https://doi.org/10.1016/j.asoc.2013.05.002

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Azarbaijan Shahid Madani University through the Grant: ASMU/1093-17/18947.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Safari.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interests regarding the publication of this paper.

Appendices

Appendix 1

Min up/down

$$ \sum\limits_{m = 1}^{{T_{i}^{\text{Up}} - T_{i,0}^{\text{Up}} }} {[1 - u_{i}^{m} ] = 0} \quad \left( {{\text{if}}\,u_{i}^{0} = 1\quad {\text{and}}\quad T_{i}^{\text{Up}} > T_{i,0}^{\text{Up}} } \right) $$
(47)
$$ \begin{aligned} & \sum\limits_{m = k}^{{k + T_{i}^{Up} - 1}} {u_{i,m} } \ge T_{i}^{\text{Up}} \left[ {u_{i}^{k} - u_{i}^{k - 1} } \right] \\ & k = G_{i} + 1, \ldots ,T - T_{i}^{Up} + 1. \\ & G_{i} = \left\{ {\begin{array}{*{20}l} {u_{i}^{0} (T_{i}^{\text{Up}} - T_{i,0}^{\text{Up}} ),} \hfill & {T_{i}^{\text{Up}} > T_{i,0}^{\text{Up}} } \hfill \\ 0 \hfill & {\text{otherwise}} \hfill \\ \end{array} } \right. \\ \end{aligned} $$
(48)
$$ \sum\limits_{m = k}^{T} {[u_{i}^{m} - u_{i}^{k} + u_{i}^{k - 1} ] \ge 0} ,\quad k = T - T_{i}^{\text{Up}} + 2, \ldots ,T $$
(49)
$$ \sum\limits_{m = 1}^{{T_{i}^{\text{Dn}} - T_{i,0}^{\text{Dn}} }} {u_{i}^{m} = 0} \quad \left( {{\text{if}}\,u_{i}^{0} = 0\quad {\text{and}}\quad T_{i}^{\text{Dn}} > T_{i,0}^{\text{Dn}} } \right) $$
(50)
$$ \begin{aligned} & \sum\limits_{m = k}^{{k + T_{i}^{\text{Dn}} - 1}} {[1 - u_{i}^{m} ]} \ge T_{i}^{\text{Dn}} \left[ {u_{i}^{k - 1} - u_{i}^{k} } \right] \\ & k = W_{i} + 1, \ldots ,T - T_{i}^{\text{Dn}} + 1. \\ & W_{i} = \left\{ {\begin{array}{*{20}l} {\left( {1 - u_{i}^{0} } \right)\left( {T_{i}^{\text{Dn}} - T_{i,0}^{\text{Dn}} } \right),} \hfill & {T_{i}^{\text{Dn}} > T_{i,0}^{\text{Dn}} } \hfill \\ 0 \hfill & {\text{otherwise}} \hfill \\ \end{array} } \right. \\ \end{aligned} $$
(51)
$$ \sum\limits_{m = k}^{T} {[1 - u_{i}^{m} - u_{i}^{k - 1} + u_{i}^{k} ] \ge 0} ,\quad k = T - T_{i}^{\text{Dn}} + 2, \ldots ,T $$
(52)

where TUp and TDn are the generator minimum up/down time, respectively, and T0 is the generator initial time.

Appendix 2

IEEE 30 Bus Test System Data

See Tables 7, 8, 9 and 10.

Table 7 Unit data
Table 8 Hour load demand
Table 9 Bus load factors
Table 10 Dynamic data of generators

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safari, A., Shahsavari, H. Frequency-constrained unit commitment problem with considering dynamic ramp rate limits in the presence of wind power generation. Neural Comput & Applic 31, 5241–5254 (2019). https://doi.org/10.1007/s00521-018-3363-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00521-018-3363-y

Keywords

Navigation