Abstract
Nested or intersecting surfaces are proven techniques for visualizing shape differences between static 3D objects (Weigle and Taylor II, IEEE Visualization, Proceedings, pp. 503–510, 2005). In this paper we present an image-based formulation for these techniques that extends their use to dynamic scenarios, in which surfaces can be manipulated or even deformed interactively. The formulation is based on our new layered rendering pipeline, a generic image-based approach for rendering nested surfaces based on depth peeling and deferred shading.
We use layered rendering to enhance the intersecting surfaces visualization. In addition to enabling interactive performance, our enhancements address several limitations of the original technique. Contours remove ambiguity regarding the shape of intersections. Local distances between the surfaces can be visualized at any point using either depth fogging or distance fields: Depth fogging is used as a cue for the distance between two surfaces in the viewing direction, whereas closest-point distance measures are visualized interactively by evaluating one surface’s distance field on the other surface. Furthermore, we use these measures to define a three-way surface segmentation, which visualizes regions of growth, shrinkage, and no change of a test surface compared with a reference surface.
Finally, we demonstrate an application of our technique in the visualization of statistical shape models. We evaluate our technique based on feedback provided by medical image analysis researchers, who are experts in working with such models.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Weigle, C., Taylor, R.M. II: Visualizing intersecting surfaces with nested-surface techniques. In: IEEE Visualization, Proceedings, pp. 503–510 (2005). doi:10.1109/VISUAL.2005.1532835
Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models—their training and application. Comput. Vis. Image Underst. 61, 38–59 (1995). doi:10.1006/cviu.1995.1004
Pagendarm, H.G., Post, F.H.: Comparative visualization—approaches and examples. In: Visualization in Scientific Computing, pp. 95–108. Springer, Berlin (1995)
Rey, D., Subsol, G., Delingette, H., Ayache, N.: Automatic detection and segmentation of evolving processes in 3D medical images: application to multiple sclerosis. Med. Image Anal. 6, 163–179 (2002). doi:10.1016/S1361-8415(02)00056-7
Busking, S., Botha, C.P., Post, F.H.: Direct visualization of deformation in volumes. In: Hege, H.C., Hotz, I., Munzner, T. (eds.) Eurographics/IEEE-VGTC Symposium on Visualization, vol. 28, pp. 799–806 (2009). doi:10.1111/j.1467-8659.2009.01471.x
Subsol, G., Roberts, N., Doran, M., Thirion, J.P., Whitehouse, G.H.: Automatic analysis of cerebral atrophy. Magn. Reson. Imaging 15, 917–927 (1997). doi:10.1016/S0730-725X(97)00002-7
Wilson, D.L., Baddeley, A.J., Owens, R.A.: A new metric for grey-scale image comparison. Int. J. Comput. Vis. 24, 5–17 (1997). doi:10.1023/A:1007978107063
di Gesú, V., Starovoitov, V.: Distance-based functions for image comparison. Pattern Recogn. Lett. 20, 207–214 (1999). doi:10.1016/S0167-8655(98)00115-9
Miranda, P.A.V., da Torres, S.R., Falcao, A.X.: TSD: a shape descriptor based on a distribution of tensor scale local orientation. In: SIBGRAPI, Proceedings, pp. 139–146 (2005). doi:10.1109/SIBGRAPI.2005.51
Veltkamp, R.C.: Shape matching: similarity measures and algorithms. In: IEEE Shape Modeling and Applications, Proceedings, pp. 188–197 (2001). doi:10.1109/SMA.2001.923389
Li, X., He, Y., Gu, X., Qin, H.: Curves-on-surface: a general shape comparison framework. In: IEEE Shape Modeling and Applications, Proceedings, pp. 38–43 (2006). doi:10.1109/SMI.2006.8
Masuda, T., Imazu, S., Auethavekiat, S., Furuya, T., Kawakami, K., Ikeuchi, K.: Shape difference visualization for ancient bronze mirrors through 3D range images. J. Vis. Comput. Animat. 14, 183–196 (2003). doi:10.1002/vis.316
Gatzke, T., Grimm, C., Garland, M., Zelinka, S.: Curvature maps for local shape comparison. In: IEEE Shape Modeling and Applications, Proceedings, pp. 244–253 (2005). doi:10.1109/SMI.2005.13
Lim, I.S., Sarni, S., Thalmann, D.: Colored visualization of shape differences between bones. In: IEEE Computer Based Medical Systems, Proceedings, pp. 26–27 (2003)
Pichon, E., Nain, D., Niethammer, M.: A Laplace equation approach for shape comparison. In: SPIE Medical Imaging, Proceedings, vol. 6141, pp. 373–382 (2006)
Tory, M., Möller, T., Atkins, M.S.: Visualization of time-varying MRI data for MS lesion analysis. In: SPIE Medical Imaging, Proceedings, vol. 4319, pp. 590–598 (2001)
Johnson, C.R., Sanderson, A.R.: A next step: visualizing errors and uncertainty. IEEE Comput. Graph. Appl. 23, 6–10 (2003). doi:10.1109/MCG.2003.1231171
Rheingans, P.: Opacity-modulating triangular textures for irregular surfaces. In: IEEE Visualization, Proceedings, pp. 219–225 (1996)
Interrante, V., Fuchs, H., Pizer, S.: Conveying the 3D shape of smoothly curving transparent surfaces via texture. In: IEEE Transactions on Visualization and Computer Graphics, pp. 98–117 (1997)
Bair, A., House, D.: A grid with a view: optimal texturing for perception of layered surface shape. IEEE Trans. Vis. Comput. Graph. 13, 1656–1663 (2007). doi:10.1109/TVCG.2007.70559
Bruckner, S., Grimm, S., Kanitsar, A., Gröller, M.E.: Illustrative context-preserving volume rendering. In: Eurographics/IEEE-VGTC Symposium on Visualization, vol. 1, pp. 69–76 (2005)
Bruckner, S., Grimm, S., Kanitsar, A., Gröller, M.E.: Illustrative context-preserving exploration of volume data. IEEE Trans. Vis. Comput. Graph. 12(6), 1559–1569 (2006). doi:10.1109/TVCG.2006.96. http://www.ncbi.nlm.nih.gov/pubmed/17073377
Weigle, C.: Displays for exploration and comparison of nested or intersecting surfaces. Ph.D. thesis (2006)
Williams, L.: Casting curved shadows on curved surfaces. In: Computer Graphics and Interactive Techniques, pp. 270–274 (1978). doi:10.1145/800248.807402
Goldfeather, J., Molnar, S., Turk, G., Fuchs, H.: Near real-time CSG rendering using tree normalization and geometric pruning. IEEE Comput. Graph. Appl. 9, 20–28 (1989). doi:10.1109/38.28107
Wiegand, T.F.: Interactive rendering of CSG models. Comput. Graph. Forum 15, 249–261 (1996)
Mammen, A.: Transparency and antialiasing algorithms implemented with the virtual pixel maps technique. IEEE Comput. Graph. Appl. 9, 43–55 (1989). doi:10.1109/38.31463
Diefenbach, P.: Pipeline rendering: interaction and realism through hardware-based multi-pass rendering. Ph.D. thesis (1996)
Everitt, C.: Interactive order-independent transparency. Tech. rep., NVIDIA (2001). URL http://developer.nvidia.com/attach/6545
Deering, M., Winner, S., Schediwy, B., Duffy, C., Hunt, N.: The triangle processor and normal vector shader: a VLSI system for high performance graphics. In: ACM SIGGRAPH, Proceedings, vol. 22, pp. 21–30 (1988)
Saito, T., Takahashi, T.: Comprehensible rendering of 3-D shapes. In: ACM SIGGRAPH, Proceedings, pp. 197–206 (1990). http://doi.acm.org/10.1145/97879.97901
Guennebaud, G., Barthe, L., Paulin, M.: Splat/mesh blending, perspective rasterization and transparency for point-based rendering. In: IEEE/Eurographics/ACM Symposium on Point-Based Graphics, pp. 49–58 (2006)
Nienhaus, M., Kirsch, F., Döllner, J.: Illustrating design and spatial assembly of interactive CSG. In: Computer Graphics, Virtual Reality, Visualization and Interaction in {Africa}, Proceedings, pp. 91–98 (2006). doi:10.1145/1108590.1108605
Mauch, S.: A fast algorithm for computing the closest point and distance transform. Tech. rep., CalTech (2000)
Peikert, R., Sigg, C.: Optimized Bounding Polyhedra for GPU-Based Distance Transform. Springer, Berlin Heidelberg (2006), pp. 65–77. doi:10.1007/3-540-30790-7_5
Bavoil, L., Callahan, S.P., Lefohn, A., Comba, J.L.D., Silva, C.T.: Multi-fragment effects on the GPU using the K-buffer. In: ACM i3D, Proceedings, pp. 97–104 (2007). http://doi.acm.org/10.1145/1230100.1230117
Ferrarini, L., Palm, W.M., Olofsen, H., van Buchem, M.A., Reiber, J.H.C., Admiraal-Behloul, F.: Shape differences of the brain ventricles in Alzheimer’s disease. Neuroimage 32, 1060–1069 (2006). doi:10.1016/j.neuroimage.2006.05.048
Likert, R.: A technique for the measurement of attitudes. Arch. Psychol. 22(140), 1–55 (1932)
Busking, S., Botha, C.P., Post, F.H.: Dynamic multi-view exploration of shape spaces. In: Melançon, G., Munzner, T., Weiskopf, D. (eds.) Eurographics/IEEE-VGTC Symposium on Visualization, vol. 29, pp. 973–982 (2010). doi:10.1111/j.1467-8659.2009.01684.x
Author information
Authors and Affiliations
Corresponding author
Electronic Supplementary Material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Busking, S., Botha, C.P., Ferrarini, L. et al. Image-based rendering of intersecting surfaces for dynamic comparative visualization. Vis Comput 27, 347–363 (2011). https://doi.org/10.1007/s00371-010-0541-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-010-0541-z