[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ Skip to main content

Advertisement

Log in

Image-based rendering of intersecting surfaces for dynamic comparative visualization

  • Original Article
  • Published:
The Visual Computer Aims and scope Submit manuscript

Abstract

Nested or intersecting surfaces are proven techniques for visualizing shape differences between static 3D objects (Weigle and Taylor II, IEEE Visualization, Proceedings, pp. 503–510, 2005). In this paper we present an image-based formulation for these techniques that extends their use to dynamic scenarios, in which surfaces can be manipulated or even deformed interactively. The formulation is based on our new layered rendering pipeline, a generic image-based approach for rendering nested surfaces based on depth peeling and deferred shading.

We use layered rendering to enhance the intersecting surfaces visualization. In addition to enabling interactive performance, our enhancements address several limitations of the original technique. Contours remove ambiguity regarding the shape of intersections. Local distances between the surfaces can be visualized at any point using either depth fogging or distance fields: Depth fogging is used as a cue for the distance between two surfaces in the viewing direction, whereas closest-point distance measures are visualized interactively by evaluating one surface’s distance field on the other surface. Furthermore, we use these measures to define a three-way surface segmentation, which visualizes regions of growth, shrinkage, and no change of a test surface compared with a reference surface.

Finally, we demonstrate an application of our technique in the visualization of statistical shape models. We evaluate our technique based on feedback provided by medical image analysis researchers, who are experts in working with such models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
£29.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Weigle, C., Taylor, R.M. II: Visualizing intersecting surfaces with nested-surface techniques. In: IEEE Visualization, Proceedings, pp. 503–510 (2005). doi:10.1109/VISUAL.2005.1532835

    Google Scholar 

  2. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models—their training and application. Comput. Vis. Image Underst. 61, 38–59 (1995). doi:10.1006/cviu.1995.1004

    Article  Google Scholar 

  3. Pagendarm, H.G., Post, F.H.: Comparative visualization—approaches and examples. In: Visualization in Scientific Computing, pp. 95–108. Springer, Berlin (1995)

    Google Scholar 

  4. Rey, D., Subsol, G., Delingette, H., Ayache, N.: Automatic detection and segmentation of evolving processes in 3D medical images: application to multiple sclerosis. Med. Image Anal. 6, 163–179 (2002). doi:10.1016/S1361-8415(02)00056-7

    Article  Google Scholar 

  5. Busking, S., Botha, C.P., Post, F.H.: Direct visualization of deformation in volumes. In: Hege, H.C., Hotz, I., Munzner, T. (eds.) Eurographics/IEEE-VGTC Symposium on Visualization, vol. 28, pp. 799–806 (2009). doi:10.1111/j.1467-8659.2009.01471.x

    Google Scholar 

  6. Subsol, G., Roberts, N., Doran, M., Thirion, J.P., Whitehouse, G.H.: Automatic analysis of cerebral atrophy. Magn. Reson. Imaging 15, 917–927 (1997). doi:10.1016/S0730-725X(97)00002-7

    Article  Google Scholar 

  7. Wilson, D.L., Baddeley, A.J., Owens, R.A.: A new metric for grey-scale image comparison. Int. J. Comput. Vis. 24, 5–17 (1997). doi:10.1023/A:1007978107063

    Article  Google Scholar 

  8. di Gesú, V., Starovoitov, V.: Distance-based functions for image comparison. Pattern Recogn. Lett. 20, 207–214 (1999). doi:10.1016/S0167-8655(98)00115-9

    Article  MATH  Google Scholar 

  9. Miranda, P.A.V., da Torres, S.R., Falcao, A.X.: TSD: a shape descriptor based on a distribution of tensor scale local orientation. In: SIBGRAPI, Proceedings, pp. 139–146 (2005). doi:10.1109/SIBGRAPI.2005.51

    Google Scholar 

  10. Veltkamp, R.C.: Shape matching: similarity measures and algorithms. In: IEEE Shape Modeling and Applications, Proceedings, pp. 188–197 (2001). doi:10.1109/SMA.2001.923389

    Chapter  Google Scholar 

  11. Li, X., He, Y., Gu, X., Qin, H.: Curves-on-surface: a general shape comparison framework. In: IEEE Shape Modeling and Applications, Proceedings, pp. 38–43 (2006). doi:10.1109/SMI.2006.8

    Google Scholar 

  12. Masuda, T., Imazu, S., Auethavekiat, S., Furuya, T., Kawakami, K., Ikeuchi, K.: Shape difference visualization for ancient bronze mirrors through 3D range images. J. Vis. Comput. Animat. 14, 183–196 (2003). doi:10.1002/vis.316

    Article  Google Scholar 

  13. Gatzke, T., Grimm, C., Garland, M., Zelinka, S.: Curvature maps for local shape comparison. In: IEEE Shape Modeling and Applications, Proceedings, pp. 244–253 (2005). doi:10.1109/SMI.2005.13

    Google Scholar 

  14. Lim, I.S., Sarni, S., Thalmann, D.: Colored visualization of shape differences between bones. In: IEEE Computer Based Medical Systems, Proceedings, pp. 26–27 (2003)

    Google Scholar 

  15. Pichon, E., Nain, D., Niethammer, M.: A Laplace equation approach for shape comparison. In: SPIE Medical Imaging, Proceedings, vol. 6141, pp. 373–382 (2006)

    Google Scholar 

  16. Tory, M., Möller, T., Atkins, M.S.: Visualization of time-varying MRI data for MS lesion analysis. In: SPIE Medical Imaging, Proceedings, vol. 4319, pp. 590–598 (2001)

    Google Scholar 

  17. Johnson, C.R., Sanderson, A.R.: A next step: visualizing errors and uncertainty. IEEE Comput. Graph. Appl. 23, 6–10 (2003). doi:10.1109/MCG.2003.1231171

    Article  Google Scholar 

  18. Rheingans, P.: Opacity-modulating triangular textures for irregular surfaces. In: IEEE Visualization, Proceedings, pp. 219–225 (1996)

    Google Scholar 

  19. Interrante, V., Fuchs, H., Pizer, S.: Conveying the 3D shape of smoothly curving transparent surfaces via texture. In: IEEE Transactions on Visualization and Computer Graphics, pp. 98–117 (1997)

    Google Scholar 

  20. Bair, A., House, D.: A grid with a view: optimal texturing for perception of layered surface shape. IEEE Trans. Vis. Comput. Graph. 13, 1656–1663 (2007). doi:10.1109/TVCG.2007.70559

    Article  Google Scholar 

  21. Bruckner, S., Grimm, S., Kanitsar, A., Gröller, M.E.: Illustrative context-preserving volume rendering. In: Eurographics/IEEE-VGTC Symposium on Visualization, vol. 1, pp. 69–76 (2005)

    Google Scholar 

  22. Bruckner, S., Grimm, S., Kanitsar, A., Gröller, M.E.: Illustrative context-preserving exploration of volume data. IEEE Trans. Vis. Comput. Graph. 12(6), 1559–1569 (2006). doi:10.1109/TVCG.2006.96. http://www.ncbi.nlm.nih.gov/pubmed/17073377

    Article  Google Scholar 

  23. Weigle, C.: Displays for exploration and comparison of nested or intersecting surfaces. Ph.D. thesis (2006)

  24. Williams, L.: Casting curved shadows on curved surfaces. In: Computer Graphics and Interactive Techniques, pp. 270–274 (1978). doi:10.1145/800248.807402

    Google Scholar 

  25. Goldfeather, J., Molnar, S., Turk, G., Fuchs, H.: Near real-time CSG rendering using tree normalization and geometric pruning. IEEE Comput. Graph. Appl. 9, 20–28 (1989). doi:10.1109/38.28107

    Article  Google Scholar 

  26. Wiegand, T.F.: Interactive rendering of CSG models. Comput. Graph. Forum 15, 249–261 (1996)

    Article  Google Scholar 

  27. Mammen, A.: Transparency and antialiasing algorithms implemented with the virtual pixel maps technique. IEEE Comput. Graph. Appl. 9, 43–55 (1989). doi:10.1109/38.31463

    Article  Google Scholar 

  28. Diefenbach, P.: Pipeline rendering: interaction and realism through hardware-based multi-pass rendering. Ph.D. thesis (1996)

  29. Everitt, C.: Interactive order-independent transparency. Tech. rep., NVIDIA (2001). URL http://developer.nvidia.com/attach/6545

  30. Deering, M., Winner, S., Schediwy, B., Duffy, C., Hunt, N.: The triangle processor and normal vector shader: a VLSI system for high performance graphics. In: ACM SIGGRAPH, Proceedings, vol. 22, pp. 21–30 (1988)

    Chapter  Google Scholar 

  31. Saito, T., Takahashi, T.: Comprehensible rendering of 3-D shapes. In: ACM SIGGRAPH, Proceedings, pp. 197–206 (1990). http://doi.acm.org/10.1145/97879.97901

    Chapter  Google Scholar 

  32. Guennebaud, G., Barthe, L., Paulin, M.: Splat/mesh blending, perspective rasterization and transparency for point-based rendering. In: IEEE/Eurographics/ACM Symposium on Point-Based Graphics, pp. 49–58 (2006)

    Google Scholar 

  33. Nienhaus, M., Kirsch, F., Döllner, J.: Illustrating design and spatial assembly of interactive CSG. In: Computer Graphics, Virtual Reality, Visualization and Interaction in {Africa}, Proceedings, pp. 91–98 (2006). doi:10.1145/1108590.1108605

    Google Scholar 

  34. Mauch, S.: A fast algorithm for computing the closest point and distance transform. Tech. rep., CalTech (2000)

  35. Peikert, R., Sigg, C.: Optimized Bounding Polyhedra for GPU-Based Distance Transform. Springer, Berlin Heidelberg (2006), pp. 65–77. doi:10.1007/3-540-30790-7_5

    Google Scholar 

  36. Bavoil, L., Callahan, S.P., Lefohn, A., Comba, J.L.D., Silva, C.T.: Multi-fragment effects on the GPU using the K-buffer. In: ACM i3D, Proceedings, pp. 97–104 (2007). http://doi.acm.org/10.1145/1230100.1230117

    Google Scholar 

  37. Ferrarini, L., Palm, W.M., Olofsen, H., van Buchem, M.A., Reiber, J.H.C., Admiraal-Behloul, F.: Shape differences of the brain ventricles in Alzheimer’s disease. Neuroimage 32, 1060–1069 (2006). doi:10.1016/j.neuroimage.2006.05.048

    Article  Google Scholar 

  38. Likert, R.: A technique for the measurement of attitudes. Arch. Psychol. 22(140), 1–55 (1932)

    Google Scholar 

  39. Busking, S., Botha, C.P., Post, F.H.: Dynamic multi-view exploration of shape spaces. In: Melançon, G., Munzner, T., Weiskopf, D. (eds.) Eurographics/IEEE-VGTC Symposium on Visualization, vol. 29, pp. 973–982 (2010). doi:10.1111/j.1467-8659.2009.01684.x

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stef Busking.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

(MPG 32.3 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Busking, S., Botha, C.P., Ferrarini, L. et al. Image-based rendering of intersecting surfaces for dynamic comparative visualization. Vis Comput 27, 347–363 (2011). https://doi.org/10.1007/s00371-010-0541-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00371-010-0541-z

Keywords

Navigation